Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2023

Subject Code:3150703 Date:20-12-2023

Subject Name: Analysis and Design of Algorithms

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS		
Q.1	(a)	What is an algorithm? Explain various properties of an algorithm.	03		
	(b)	Solve the following using Master's theorem: a. $T(n) = 2T(n/4) + 1$	04		
		b. $T(n) = 3T(n/4) + 1$			
	(c)	Write selection sort algorithm and compute running time of algorithm.	07		
Q.2	(a)	Explain general characteristics of greedy algorithms.	03		
~	(b)	What is asymptotic notation? Find out big-oh notation of the $f(n) = 3n^2 + 5n + 10$	04		
	(c)	Illustrate the working of the quick sort on input instance: 25, 29, 30, 35, 42, 47,	07		
		50, 52, 60. Comment on the nature of input i.e. best case, average case or worst			
		case. Also discuss worst and best case of quick sort algorithm.			
	(a)	OR	07		
	(c)	Give the properties of Heap Tree. Sort the following data using Heap Sort Method: 20, 50, 30, 75, 90, 60, 80, 25, 10, 40.	U/		
Q.3	(a)	Sort the List "G,U,J,A,R,A,T,S,A,R,K,A,R" in alphabetical order using merge	03		
~	(44)	sort.			
	(b)	Following are the details of various jobs to be scheduled on multiple processors	04		
		such that no two processes execute at the same on the same processor. Show			
		schedule of these jobs on minimum number of processors using greedy approach.			
		Jobs J_1 J_2 J_3 J_4 J_5 J_6 J_7			
		Start time 0 3 4 9 7 1 6 Finish time 2 7 7 11 10 5 8			
	(c)	Using algorithm find an optimal parenthesization of a matrix chain product	07		
	(C)	whose sequence of dimension is (5,10,3,12,5,50,6) (use dynamic programming).	07		
		OR			
Q.3	(a)	Apply counting sort for the following numbers to sort in ascending order.	03		
		3, 1, 2, 3, 3, 1			
	(b)	Find the Optimal Huffman code for each symbol in following text	04		
	(-)	ABCCDEBABFFBACBEBDFAAAABCDEEDCCBFEBFCAE	07		
	(c)	Solve following knapsack problem using dynamic programming algorithm with given capacity W=5, Weight and Value are as follows (2,12),(1,10),(3,20),(2,15)			
Q.4	(a)	Solve the following Task Assignment problem for minimization using following	03		
ζ. .	(4)	cost matrix. (Cost matrix represents cost of Task T performed by Person P).			
		T_1 T_2 T_3			
		$P_1 = 10 = 20 = 25$			

 P_2

 P_3

20

12

23

16

26

25

1

- (b) Given coins of denominations 2, 3 and 4 with amount to be pay is 5. Find optimal no. of coins and sequence of coins used to pay given amount using dynamic method.
- Write an algorithm to find out the articulation points of an undirected graph. Find 07 (c) out articulation points for the following graph. Consider vertex 0 as the starting point.

OR

- 0.4 Find out the NCR $\binom{5}{3}$ Using Dynamic Method.
 - Write the Kruskal's Algorithm to find out Minimum Spanning Tree. Apply the 04 same and find MST for the graph given below.

- Explain Backtracking Method. What is N-Queens Problem? Give solution of 4-07 (c) Queens Problem using Backtracking Method.
- Q.5 Demonstrate Binary Search method to search Key = 14, form the array A 03 (a) = <2,4,7,8,10,13,14,60>.
 - Solve the following knapsack problem using greedy method. Number of items = 04 **(b)** 5, knapsack capacity W = 100, weight vector = $\{50,40,30,20,10\}$ and profit $vector = \{1,2,3,4,5\}.$
 - Define P, NP, NP-complete, NP-Hard problems. Give examples of each **07** (c) OR
- Explain in Brief: Polynomial reduction. **Q.5** (a)
 - 03 Traverse the following graph using Breadth First Search Technique. Also draw 04 **(b)** BFS Tree for a given graph.

Explain spurious hits in Rabin-Karp string matching algorithm with example. **07** Working modulo q=13, how many spurious hits does the Rabin-Karp matcher encounter in the text T = 2359023141526739921 when looking for the pattern P = 26739?

04

03