GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER–VI (NEW) EXAMINATION – SUMMER 2024 Dete:3160704 Date:15-05-2024

Subject Code:3160704

Subject Name: Theory of Computation

Time:10:30 AM TO 01:00 PM

Total Marks:70

Marks

07

04

07

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Suppose A and B are sets, $f = A \rightarrow B$ and $g = B \rightarrow A$. If f(g(y)) = y for 03 every $y \in B$, then f is a ______ function and g is a ______ function. Give reasons for your answers.
 - (b) Given three statements p, q and r. p: a = 1, q: b = 0, r: c = 3. *Write the following statements symbolically, using p, q, r, V, A, ¬ and → only.*04
 - 1. Either a = 1 or $b \neq 0$.
 - 2. b = 0, but neither a = 1 nor c = 3.
 - (c) Discuss pumping lemma for regular languages.
- Q.2 (a) Define Chomsky Normal Form of grammar. 03
 - (**b**) Define a Moore machine.
 - (c) Apply the rules and convert the given NFA- λ to FA.

OR

- (c) Draw the NFA- λ for r = (0)11* + (101)* 0 and also construct the equivalent NFA 07 and FA for the same.
- **Q.3** (a) Given two languages L_1 and L_2 defined over $\Sigma = \{a, b\}^*$, L_1 accepts palindrome **03** strings and L_2 accepts strings with equal number of 0's and 1's. Which one of these languages is regular? Give reasons.
 - (b) Show how, if a pushdown automaton recognizes some language, then it is context 04 free.
 - (c) If a regular expression is given as $(001)^*(01 + 10)$. Apply the rules to construct a **07** regular grammar for this language.

OR

Q.3 (a) Construct a Finite Automata that accepts all strings containing 010 or 111 as sub- 03 string only.

- (b) Apply pumping lemma to show that the language $L = \{a^n b^n c^n \mid n \ge 0\}$ is not **04** context free.
- (c) Apply the rules and show step by step conversion of the following grammar to 07 CNF.

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $P \rightarrow b \mid c$

		$B \rightarrow b \mid \epsilon$	
Q.4	(a)	Define DPDA with clear definition of δ (transition function).	03
-	(b)	Discuss intersection of CFLs with an example.	04
	(c)	Apply the rules and step by step create a Turing Machine to accept $L = \{a^n b^n\}$	07
		OR	
Q.4	(a)	The language of DPDA is called DCFL. Explain whether this statement is true or false.	03
	(b)	Discuss complement of CFLs with an example.	04
	(c)	Construct a Turing machine to accept even palindrome over $\Sigma = \{a,b\}^*$	07
Q.5	(a)	Explain the concept of undecidable problems.	03
	(b)	Discuss multi-tape Turing machine.	04
	(c)	Write a note on Primitive Recursive functions.	07
		OR	
Q.5	(a)	A language is decidable if and only if some nondeterministic Turing machine decides it. Explain the statement.	03
	(b)	Regular languages and CFLs are both decidable and Turing-recognizable. Explain whether true or false.	04
	(c)	Define and explain Bounded Quantification.	07
