E	mom		
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–III (NEW) EXAMINATION – SUMMER 2024 Subject Code:3130704 Date:06-07-2024			
	•		2024
Subject Name: Digital Fundamentals			
Time:10:30 AM TO 01:00 PM Total Marks			s:70
I	nstruc	ctions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
		 Simple and non-programmable scientific calculators are allowed. 	
			MARKS
Q.1	(a)	List out various logic families. Also list characteristics of digital IC.	03
-	(b)		04
	(c)	Implement AND, OR, EX-OR gates using NAND & NOR gates.	07
Q.2	(a)	Reduce the expression $F = x'y'z + yz + xz$	03
~·-	(b)		04
	(c)	Design a Combinational circuit that convert Binary to BCD code converter.	07
	(0)	OR	07
	(c)	Design a Combinational circuit that convert BCD to Excess 3 code converter.	07
Q.3	(a)	Minimize following Boolean function using K-map: $Y(A,B,C,D) = \Sigma m(0, 1, 3, 5,6, 7, 10, 13, 14, 15)$	03
	(b)	Explain 4 – bit parallel adder with diagram.	04
	(c)	Design 2 - Bit Magnitude Comparator.	07
		OR	
Q.3	(a)	Design D FF using SR FF. Write truth table of D FF.	03
-	(b)	Minimize following Boolean function using K-map: $F(A,B,C,D) = \Sigma m(1, 5, 6, 12, 13, 14) + d(2, 4)$	04
	(c)	Design 3-bit even parity generator circuit.	07
Q.4	(a)	Compare static RAM and dynamic RAM.	03
	(b)	Explain JK flip flop with its characteristic table and excitation table.	04
	(c)	Write a brief note on race around condition and its solution. Draw & explain the	07
		logic diagram of master-slave JK flip-flop.	
~ .		OR	
Q.4	(a)	Explain the types of ROM.	03
	(b)	1 70	04
	(c)	Design a Synchronous counter with the following binary sequence: 0, 1, 3, 4,5,	07
		7 and repeat. Use $T - $ flip-flops	
0.5	$\left(\right)$		0.2
Q.5	(a)	Explain the working of a Counter.	03
	(b)	1 01	04
	(c)	A combinational circuit is defined by the function F1 (A, B, C,) = Σ m (0,1,3,4)	07
		F2 (A, B, C,) = Σ m (1.2.3,4,5) Implement the circuit with a PLA having 3 inputs,	
		3 product term & 2 outputs.	
07	(-)	OR	0.2
Q.5	(a)	Explain the working of SISO shift register.	03
	(b)	Explain the specification of D/A converter	04
	(c)	Describe operation of D/A converter with binary-weighted resisters	07

##