GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION – SUMMER 2024

Subject Code:3130006

Subject Name: Probability and Statistics

Time:10:30 AM TO 01:00 PM

Total Marks:70

Date:16-07-2024

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

03

07

03

04

07

- Q.1 (a) Define and give the example of Random variable.
 - (b) What is the probability that a leap year selected at random will have 53 Sundays? 04
 - (c) In a bolt factory, three machines A, B and C produce 25%, 35% and 40% of total output respectively. It was found that 5%,4% and 2% are defective bolts in the production by machines A, B, C respectively. A bolt is chosen at random from the total output and is found to be defective. Find the probability that it is manufactured from (i) Machine A(ii) Machine B (iii) Machine C.
- Q.2 (a) A bag contains 3 red and 4 white balls. Two draws are made without replacement.O3 What is the probability that both balls are red.
 - (b) The probability that a student A solves a mathematics problem is $\frac{2}{5}$ and the probability that a student B solves it is $\frac{2}{3}$. What is the probability that (i) the problem is not solved (ii) both A and B can solve the problem, working independently of each other?
 - (c) Verify that the following function F(x) is a distribution function.

$$F(x) = \begin{cases} 0; & x < 0\\ 1 - e^{-\frac{x}{4}}; & x \ge 0 \end{cases}$$

Also, find the probabilities $P(X \le 4), P(X \ge 8), P(4 \le X \le 8).$

OR

- (c) The probability mass function of a random variable X is zero except at the points X = 0, 1, 2. At these points, it has the values $P(X = 0) = 3c^3$, $P(X = 1) = 4c 10c^2$, P(X = 2) = 5c 1. Find (i) c (ii) P(X < 1) (iii) $P(1 < X \le 2)$ (iv) $P(0 < X \le 2)$.
- **Q.3** (a) Find the constant k such that the function

$$f(x) = \begin{cases} kx^2; & 0 < x < 3\\ 0; & othewise \end{cases}$$

is a probability density function,

(b) A random variable X has the following distribution:

X	1	2	3	4	5	6		
P(X	1	3	5	7	9	11		
= x)	36	36	36	36	36	36		
Find (i) maan (ii) yarianga								

Find (i) mean (ii) variance.

(c) Compute Karl Pearson's coefficient of correlation between *X* and *Y* for the following data:

x	10	14	18	22	26	30
у	18	12	24	6	30	36

- Q.3 (a) Find coefficient of correlation between x and y if the regression lines are: x + 6y = 6 and 3x + 2y = 10.
 - (b) Calculate the first four moments from the following data: $x \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$
 - x
 0
 1
 2
 3
 4
 5
 6
 7
 8

 y
 5
 10
 15
 20
 25
 20
 15
 10
 5

(c) The following data give the experience of machine operators and their **07** performance rating as given by the number of good parts turned out per 100 piece.

P	<i>0 C</i>					
Operator	1	2	3	4	5	6
Performance rating (x)	23	43	53	63	73	83
Experience (y)	5	6	7	8	9	10

Calculate the regression line of performance rating on experience and also estimate the probable performance if an operator has 11 years of experience.

- Q.4 (a) Explain the term related to testing of hypothesis: (i) Null hypothesis (ii) Alternate 03 hypothesis and (iii) Level of Significance
 - (b) A dice is tossed 960 times and it falls with 5 upwards 184 times. Is the dice 04 unbiased at a level of significance of 0.01? ($|Z_{0.01}| = 2.58$)
 - (c) A set of five similar coins is tossed 320 times and result is obtained as follows

No of	0	1	2	3	4	5
heads						
Frequency	6	27	72	112	71	32

Test the hypothesis that the data follow a binomial distribution. (Critical value $\chi^2_{0.05} = 11.07$)

OR

- Q.4 (a) The heights of 10 males of a given locality are found to be 175, 168, 155, 170, 152, 170, 175, 160, 160 and 165 cm. Based on this sample, find the 95% confidence limits for the heights of males in that locality. $[t_{0.05}(v = 9) = 2.262]$
 - (b) Random samples drawn from two countries gave the following data relating to the heights of adult males: 04

	Country A	Country B
Standard	2.58	2.50
deviation (in		
inches)		
Number in	1000	1200
samples		

Is the difference between the standard deviation significant? $(|Z_{0.05}| = 1.96)$

(c) If a random variable has a Poisson distribution such that P(X = 1) = P(X = 2), **07** find (i) the mean of the distribution (ii) P(X = 4) (iii) $P(X \ge 1)$ (iv) P(1 < X < 4).

Q.5 (a) Fit a straight line y = ax + b to the following data:

	x	1	2	3	4	6	8
	у	2.4	3	3.6	4	5	6
(b)	Fit a cur	ve $y = 0$	ab^x to the	ne follow	ving data	ı:	

rn a c	urve y	-uv						
x	1	2	3	4	5	6	7	8
у	1	1.2	1.8	2.5	3.6	4.7	6.6	9.1

(c) The lifetime of a certain kind of batteries has a mean life of 400 hours and the standard deviation as 45 hours. Assuming the distribution of lifetime to be normal, find (i) the percentage of batteries with a lifetime of at least 470 hours (ii) the proportion of batteries with a lifetime between 385 and 415 hours, and (iii) the minimum life of the best 5% of batteries. (P(0 < z < 0.33) = 0.1293)

Q.5 (a) The mean and variance of a binomial variate are 8 and 6. Find $P(X \ge 2)$.

04

07

03

03

04

- (b) Out of 800 families with 5 children each, how many would you except to have (i) 04 3 boys? (ii) 5 girls?(c) Fit a second-degree parabolic curve to the following data:

x	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	11	10	9

07