GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023

Subject Code:3130704 Date:01-08-2023

Subject Name:Digital Fundamentals

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Define the logic family properties:	03
	a \	(i) fan in (ii) propagation delay (iii) power dissipation	0.4
	(b)	Convert the following number to the given base: $(3) (62) = (2) = (2)$	04
		(i) $(62)_{10} = (?)_2 = (?)_8$ (ii) $(AFB)_{16} = (?)_2 = (?)_8$	
	(c)	Why NAND and NOR gates are called universal gates?	07
	. ,	Explain with appropriate example.	
0.2	(a)	Explain the half subtractor with logic circuit.	03
Q.2	(a) (b)	Minimized the boolean expression using K-map	03
	(0)	$f(A, B, C, D) = \sum m(0, 1, 5, 6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15)$	04
	(c)	Design BCD to excess-3 converter.	07
	()	OR	
	(c)	Design a circuit which compare two binary number whether $A>B$, $A=B$ or $A.$	07
		11/B, 11-B 01 11 (B.	
Q.3	(a)	Draw the circuit of a J-K flip-flop.	03
	(b)	Describe the operation of a shift register with suitable diagram.	04
	(c)	Design the four bit Johnson counter and explain the operation.	07
		OR	
Q.3	(a)	Explain different methods of Triggering of flip-flop.	03
	(b)	What are qualitative differences between parallel loading	04
	(c)	and serial loading in shift registers? Design a 3 bit synchronous counter using JK flip flop.	07
	(C)	Design a 5 on synchronous counter using 3K mp nop.	O7
Q.4	(a)	How can we describe the resolution of a D/A converter?	03
	(b)	A 10-bit D/A converter provides an analog output which	04
		has a maximum value of 10.23 volts. Find the resolution of	
	()	this D/A converter.	05
	(c)	Explain the working of R-2R ladder type D/A converter.	07
Q.4	(a)	OR Explain the types of A/D convertors.	03
Ų. 4	(a) (b)	A 10-bit D/A converter has a step-size of 10 mV. Determine	03
	(~)	the full-scale output voltage and the percentage resolution.	.

	(c)	Describe the successive approximation A/D conversion principle with the neat diagram, explain this type of A/D converter.	07
Q.5	(a)	Draw and explain the structure of a RAM cell.	03
	(b)	Implement using PLA	04
		$f_1 = \sum m(0, 3, 4, 7)$	
		$f_2 = \sum m(3, 5, 6, 7)$	
	(c)	Discuss in brief semiconductor memory organization and	07
		its operation.	
		OR	
Q.5	(a)	Compare the SRAMs and DRAMs.	03
	(b)	•	04
	()	PROM.	
		$f_1(x_2, x_1, x_0) = \sum m(0, 1, 2, 5, 7)$	
		$f_2(x_2, x_1, x_0) = \sum m(1, 2, 4, 6)$	
	(c)	What is a programmable LOGIC Array (PLA)? Describe with a logic diagram the principle of operation of a PLA. What are its advantages?	07
