GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-VI (NEW) EXAMINATION – WINTER 2024

Subject Code:3160704 Date:20-11-2024 **Subject Name: Theory of Computation** Time:02:30 PM TO 05:00 PM **Total Marks:70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed. Marks 0.1 (a) Define Finite Automata (FA) with an example. 3 Write regular expressions for the following. 4 **(b)** (i) Binary numbers that are multiple of 2. (ii) Strings of a's and b's with no consecutive a's. (iii) Strings of a's and b's containing consecutive a's. Construct a DFA for the language over $\{0, 1\}^*$ such that it contains "000" as 7 (c) a substring. Q.2 (a) Define ε -closure(q) with an example. 3 State the difference between NFA and DFA. 4 **(b)** Prove by pumping lemma, that the language $0^{n}1^{n}$ is not regular. 7 (c) OR (c) What is ambiguous grammar? 7 Is the following grammar ambiguous? 1. $E \rightarrow E + E | E^*E | id$ 2. $E \rightarrow E + E | E^*E | (E) | a$ Justify your answer. **Q.3** State the definition of Pushdown automata. 3 (a) (b) Is NPDA (Nondeterministic PDA) and DPDA (Deterministic PDA) 4 equivalent? Illustrate with an example. Construct PDA for the language 7 (c) $L=\{ww^R \mid w\in(a+b)^*\}$ OR 3 Q.3 (a) State and prove the pumping lemma for CFL. What is its main application? Give an example. (b) Compare Deterministic PDA and Non deterministic PDA. 4 Is it true that non deterministic PDA is more powerful than that of 7 (c) deterministic PDA? Justify your answer. (a) Construct a CFG for set of strings that contain equal number of a's and b's 3 **Q.4** over $\Sigma = \{a, b\}$. (b) What is chomsky normal form? 4 Explain with an example (c) Convert the following grammar G in greibach normal form. 7

		$S \rightarrow ABb a$
		$A \rightarrow aaA B$
		B→bAb
		OR
Q.4	(a)	What is a Turing machine?
	(b)	Design a Turing machine with no more than three states that accepts the
		language a(a+b)*.
		Assume $\Sigma = \{a, b\}$

(c)	Convert the following grammar into CNF	7
	$S \rightarrow cBA, S \rightarrow A, A \rightarrow cB, A \rightarrow AbbS, B \rightarrow aaa$	

3

4

7

Q.5	(a)	When we say a problem is decidable?	3
		Give an example of an undecidable problem.	
	(b)	Mention the difference between P and NP problems.	4
	(c)	Prove that for two recursive languages L1 and L2 their union and intersection	7
		is recursive.	
		OR	
Q.5	(a)	What is a recursively enumerable language?	3
	(b)	Mention the difference between decidable and undecidable problems.	4

Explain NP-complete problems with an example

(c)