		GUJARAT TECHN						
G1	• • • •	BE- SEMESTER-V (NEV	V) EXAM	INATIO		0.2.4		
	-	Code:3150703	- C A 1	• 4 1	Date:17-12-2	024		
		Name:Analysis and Design	of Algor	itnms		.70		
Time:10:30 AM TO 01:00 PM Total Marks:70 Instructions:								
məti		Attempt all questions.						
	2.	Make suitable assumptions where		ary.				
		Figures to the right indicate full m Simple and non-programmable sc		aulatara a	ara allawad			
	4.	Simple and non-programmable sc	lentine car	culators a	are anoweu.			
						Marks		
Q.1	(a)	Define the following terms:				03		
-	i) Function in mathematics ii) Linear inequalities							
	(b)	Explain the need of amortized no	otation. Ex	plain wit	h suitable example.	04		
	(c)	Write an algorithm for insertion	sort. Calcu	ulate the	best, average and worst	07		
		case complexity of it.						
Q.2	(a)	0	g counting	sort.		03		
	<i>(</i> -)	2, 5, 3, 0, 2, 3, 0, 3						
	(b)	U U	g bucket so	ort.		04		
	(-)	10, 21, 29, 41, 52	C 11 '			07		
	(c)	Write the Master theorem. Solve (i)T(n)= $3T(n/2) + n^2$	Tollowing	recurren	ce using it.	07		
		(i) $T(n)=3T(n/2) + n$ (ii) $T(n)=2T(n/2) + n \log n$						
			OR					
	(c)	Write binary search algorithm using recursion. Derive its recurrence						
		relation. Calculate its complexity	using ma	ster theor	cem.			
Q.3	(a)	Explain the steps of greedy strate	on for sol	ving a pr	oblem	03		
Q.J	(a) (b)	Write an algorithm for Max-N				03 04		
	(0)	approach. Calculate its complexi		eni usin	g unvide and conquer	04		
	(c) The matrices A(5X10), B(10X15), C(15X20), and D(20X25) are given							
		Solve the matrix chain multiplica	-	em using	dynamic programming.			
0.2	(a)	Enlist the concret characteristics	OR of amodu	alaanithn		02		
Q.3	(a) (b)	Enlist the general characteristics		-		03 04		
	(b)	Write an algorithm for matrix	-	uton usn	ig divide and conquer	04		
	(c)	approach. Calculate its complexity. For the given set of items and knapsack capacity = 5 kg, find the optimal						
		solution for the 0/1 knapsack pro	-			07		
		Item	Weight	Value				
		Il	2	3				
		<u>I2</u>	3	4				
		<u>I3</u>	4	5				

- **Q.4** (a) Explain DFS with suitable example.
 - (b) Enlist the advantages and disadvantages of dynamic programming.

5

6

I4

03

04

(c)	Define minimum	spanning tree	e. Explain	Prim's	algorithm	with	suitable	07
	example.							

OR

(a)	Explain BFS with suitable example.	03
(b)	Define principal of optimality. Explain its use in Dynamic Programming	04
(c)		07
(a)	Define string matching problem. Define valid shift and invalid shift.	03
(b)	Define the followings:	04
(c)	i) Articulation point ii) Acyclic Directed Graph iii) Back Edge iv) Tree Explain P, NP, NP complete and NP-Hard problems. Give examples of each.	07
	OR	
(a)	Explain Backtracking Method. Give solutions for 4-queens problem using backtracking method.	03
(b)	Explain in-order, pre-order and post-order traversals of the graph.	04
(c)	Write short note on the followings: i) Approximation algorithms ii) Randomized algorithms	07
	 (b) (c) (a) (b) (c) (a) (b) (b) 	 (b) Define principal of optimality. Explain its use in Dynamic Programming Method. (c) "A greedy strategy will work for fractional Knapsack problem but not for 0/1", is this true or false? Explain with suitable example. (a) Define string matching problem. Define valid shift and invalid shift. (b) Define the followings: i) Articulation point ii) Acyclic Directed Graph iii) Back Edge iv) Tree (c) Explain P, NP, NP complete and NP-Hard problems. Give examples of each. OR (a) Explain Backtracking Method. Give solutions for 4-queens problem using backtracking method. (b) Explain in-order, pre-order and post-order traversals of the graph. (c) Write short note on the followings: i) Approximation algorithms
