Subject Name:Mathematics - 2 Time:10:30 AM TO 01:30 PM

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

4. Simple and non-programmable scientific calculators are allowed.

(a) Find a such that $(x+3y)\hat{i} + (y-2z)\hat{j} + (x+az)\hat{k}$ is solenoidal.

3. Figures to the right indicate full marks.

Subject Code:3110015

Instructions:

Q.1

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-I & II EXAMINATION - WINTER 2024

Date:10-01-2025

Total Marks:70

03

	(b)	Solve $ye^x dx + (2y + e^x) dy = 0$	04
	(c)	Verify Green's theorem in a plane for the integral $\int [(x-2y)dx + x dy]$ taken	07
		around the circle $x^2 + y^2 = 4$.	
Q.2	(a)	Find the Laplace transform of $(\sin 2t - \cos 2t)^2$.	03
	(b)	Find the Fourier sine integral of $f(x) = e^{-bx}$.	04
	(c)	Using the Frobenius method, obtain the series solution for	07
		$2x(1-x)y'' + (1-x)y' + 3y = 0$ about $x_0 = 0$.	
		OR	
	(c)	Using the method of undetermined coefficients, solve	07
		$(D^2 - 9) y = x + e^{2x} - \sin 2x.$	
Q.3	(a)	Find the arc length of the curve $\vec{r}(t) = t^2 \hat{i} + t^3 \hat{j}$ between (1,1) and (4,8).	03
	(b)		04
		Find the Laplace transform of $\frac{e^{-t}\sin t}{t}$.	
	(c)	State the convolution theorem and verify it for $f(t) = t$ and $g(t) = e^{2t}$.	07
		OR	
Q.3	(a)	Find the inverse Laplace transform of $tan^{-1} s$.	03
	(b)	Solve $x^2p^2 + 3xyp + 2y^2 = 0$.	04
	(c)	Solve the initial value problem using Laplace transformation $y'' - 3y' + 2y = 4t$	07
		with $y(0) = 1$, $y'(0) = -1$.	
Q.4	(a)	Find the inverse Laplace transform of $\frac{e^{-\pi s}}{s^2 - 2s + 2}$.	03
	(b)	$s^2 - 2s + 2$	04
		Solve $(D^2+1)y=e^{-x}$.	04
	(c)	Using method of variation of parameters, solve $(D^2 - 2D + 2)y = e^x \tan x$.	07
0.4	(a)	OR	02
Q.4	(a)	Classify the singular points of the equation $x^3(x-2)y'' + x^3y' + 6y = 0$.	03
			1
			-

	(b) (c)	Find the Laplace transform of $\sin \sqrt{t}$. Find the series solution of $(1+x^2)y'' + xy' - 9y = 0$.	04 07
Q.5	(a)	Solve $dr + (2r \cot \theta + \sin 2\theta) d\theta = 0$	03
	(b)	If $y_1 = \frac{\sin x}{x}$ is one of the solution of $xy'' + 2y' + xy = 0$, find the second solution.	04
	(c)	Show that (i) $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ (ii) $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.	07
		OR	
Q.5	(a)	Find the Laplace transform of $\int_{0}^{t} \int_{0}^{t} \sin at dt dt$.	03
	(b)	Solve $(x^2D^2 - xD + 2)y = 6$.	04
	(c)	Prove that $J_0^2(x) + 2[J_1^2(x) + J_2^2(x) + J_3^2(x) +] = 1$	07
