Time:10:30 AM TO 01:00 PM

1. Attempt all questions.

Subject Name: Basic Mechanical Engineering

3. Figures to the right indicate full marks.

6. Use of Steam Tables is permitted.

(b) List sources of renewable energy.

Define following terms:

(i) (ii)

(iii)

(iv)

(i)

(ii)

(iii)

(iv)

(v)

calorimeter.

Define prime mover and classify it.

2. Make suitable assumptions wherever necessary.

(a) State and explain zeroth law of thermodynamics.

Derive characteristic equation of a perfect gas.

Dryness fraction

Final temperature

Change in enthalpy,

Take R=0.287 kJ/kg K and c_p = 1.001 kJ/kg K

Work-done

Degree of superheat

Enthalpy of evaporation

Change in internal energy

Amount of heat transferred

Water separated in separating calorimeter = 0.45 kgSteam discharge from throttling calorimeter = 7 kg

Enthalpy of superheated steam

One kg of gas is compressed polytropically from 150 kPa pressure and 290 K

temperature to 750 kPa. The compression is according to law pV^{1.3} = C. find

ORDetermine dryness fraction of steam supplied to a separating and throttling

4. Simple and non-programmable scientific calculators are allowed.5. Simple and non-programmable scientific calculators are allowed.

Subject Code:3110006

Instructions:

(c)

(a)

(b)

0.1

Q.2

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-I & II EXAMINATION - WINTER 2024

Date:02-01-2025

Total Marks:70

Marks

03

04

07

03

04

07

07

		Steam pressure in main pipe = 1.2 MPa	
		Barometer reading= 760 mm of Hg	
		Manometer reading = 180 mm of Hg	
		Temperature of steam after throttling = 140° C	
		Take C _{ps} =2.1kJ/kgK	
Q.3	(a)	State limitations of Carnot gas power cycle.	03
	(b)	Compare 2- stroke engine with 4- stroke engine.	04
	(c)	Derive an expression of air standard efficiency of Otto cycle. Draw its P-V	07
	` ′	and T-S diagram.	
		OR	
Q.3	(a)	State assumptions considered for analysis of air standard cycle.	03
	(b)	Derive an expression for thermal efficiency of rankine cycle.	04
	(c)	The following data is available for 2-stroke diesel engine:	07

Bore = 10 cm, stroke = 15 cm, engine speed=1000 rpm, torque developed= 58 N-m, η_m = 80%, $\eta_{i,th}$ = 40%, calorific value of fuel =44000 kJ/kg. Find: (i) Indicated power (ii) Mean effective pressure (iii) Brake specific fuel consumption.

Q.4	(a)	Define Compressor. State uses of compressed air.	03
	(b)	Discuss briefly location and function of the followings;	04
		(i) Water level indicator	
		(ii) Pressure Gauge	
	(c)	Explain with neat sketch working of Cochran boiler.	07
	` ′	OR	
Q.4	(a)	Define following with reference to air compressor;	03
		(i) Free air delivery	
		(ii) Swept volume	
		(iii) Volumetric efficiency	
	(b)	Differentiate between boiler mountings and accessories.	04
	(c)	Explain with neat sketch construction and working of split air conditioner.	07
Q.5	(a)	State the application of following gears	03
	` ,	(i) Helical gear, (ii) worm and worm gear (iii) rack and pinion	
	(b)	What is coupling? Classify it.	04
	(c)	Explain with neat sketch working of centrifugal pump.	07
	` ′	OR	
Q.5	(a)	Enlist types of belt drive.	03
	(b)	Differentiate between clutch and brake.	04
	(c)	Explain following properties of materials.	07
	` /	(i) Elasticity, (ii) Plasticity, (iii) Ductility, (iv) Brittleness (v) Hardness (vi)	
		Toughness, (vii) Fatigue	
