Subje	ect	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–VI (NEW) EXAMINATION – WINTER 2023 Code:3160704 Date:02-1	2-2023
Time	:02	:30 PM TO 05:00 PM Total Mar	ks:70
Instruc	ction 1. 2. 3. 4.	is: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
01	(6) Say whether the statement $(n + (n + a)) \rightarrow a$ is toutology or	MARKS
Ų.1	(2	contradiction.	03
	(1	 The given relation R on set A= {1,2,3} determine whether the Relation is reflexive, symmetric or transitive, give reason. R = {(1,1), (1,2), (2,1), (2, 2), (3,2), (3,3)} 	04
	(0	Write Principle of Mathematical Induction. And prove for every $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i(i+1)} = n/(n+1)$	07
Q.2	(8	a) Define FA and Write recursive definition of NFA	03
	()	 Find a regular expression of following subsets of {0, 1}* 1. The language of all strings that begin or end with 00 or 11. 2. The language of all strings ending with 1 and not containing 00. 	04
	(0	 Draw Finite Automata to accept following over input alphabets Σ ={0, 1} (i) The language accepting strings not ending with '01'. (ii) The language accepting strings not containing substring '00' OR 	07
	(0	Let M1 and M2 be the FAs pictured in Figure, recognizing languages L1 and L2 respectively.	07
		M1 M2	
		$\bigwedge \circ$ \bigwedge^1 \bigcirc \bigcirc	

Draw FAs recognizing the following languages.

a. L1 U L2

b. L1 - L2

Q.3	(a)	Find context-free grammar for the language:	$L=\{a^ib^jc^k \mid i=j+k\}$	03
	(b)	Define meety meeting Design and meety me	abing that gives output 'w' if	04

- Define mealy machine. Design and mealy machine that gives output 'x' if **(b)** 04 input of sequence is abb, otherwise z. 07
- Convert NFA- Λ to FA for following figure. (c)

Q	δ(q, ^)	δ(q, 0)	δ(q, 1)
-A	{B}	{A}	Ø
В	{D}	{C}	Ø
С	Ø	Ø	{B}
+D	Ø	{D}	Ø

- OR
- Q.3 Define Ambiguous grammar. for following grammar say whether the **(a)** 03 grammar is ambiguous or not. give reason $S \rightarrow ABA, A \rightarrow aA | \Lambda, B \rightarrow bB | \Lambda$
 - Convert the given Moore machine into Mealy machine. Draw state **(b)** transition diagram of Mealy machine.

Present	Next State		Output	
State	0	1		
→p0	r	q0	3	
p1	r	q0	1	
q0	p1	s0	0	
q1	p1	s0	1	
r	q1	p1	0	
s0	s1	r	0	
s1	s1	r	1	

(c) Find minimum state FA for following figure.

Q.4	(a)	State pumping lemma for context free language.	03
	(b)	Construct PDA for	04
		$S \rightarrow 0AB$	
		$A \rightarrow 1A \mid 1$	
		$B \rightarrow 0B \mid 1A \mid 0$	
		Trace the string 01011 using PDA.	
	(c)	Write Kleen's Theorem part -1.	07
		OR	
Q.4	(a)	Define Push Down Automata	03
	(b)	Using kleene's Theorem Draw NFA-Λ for a given RE aa(ba)*+b*aba*	04
	(c)	Given the context-free grammar G, find a CFG G' in Chomsky Normal	07
	. ,	Form.	
		$S \rightarrow AaA \mid CA \mid BaB$	
		$A \rightarrow aaBa \mid DC$	
		$B \rightarrow bh \mid aS$	
		$C \rightarrow C_0 bC D$	
		$D \rightarrow bD A$	
		$D \approx 0D R$	
Q.5	(2)	Explain Universal Turing Machine	03
	(\mathbf{u})	Design a PDA to accept $I = \{x \in v \mid x \in (a, b) \}$ and $ x = v $	03
	(\mathbf{D})	Design a 1 DA to accept $L = \{x, y \in (a, b)\}$ and $ x = y \}$.	07
	(\mathbf{C})	Develop a furning Machine to accept painteronies over {a,b}	07
05	(-)	UK Define snown on d Chomeleu bionschu	02
Q.5	(a)	Denne grammar and Chomsky nierarchy.	03

07

04

- (b) Design a PDA to accept $L = \{a^i b^j C^k | j = i+k\}.$
- (c) Develop a Turing Machine to accept the language $L = \{X / N_a(X)=N_b(X), X \in \{a,b\}^*\}$ 07

04