GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (NEW) EXAMINATION – WINTER 2023 Code: 3140707 Date: 19-01-202

Subj	Subject Code:3140707 Date:19-01-202		24
Subject Name: Computer Organization & ArchitectureTime: 10:30 AM TO 01:00 PMTotal Marks:			70
Instru	1. 1. 2. 3. 4.	is: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a) (b)	Draw the block diagram of a hypothetical basic computer. Show different ways to represent fixed-point positive integers including zero.	03 04
	(c)	Explain using flowchart the working of Booth's multiplication algorithm of signed-2's complement numbers.	07
Q.2	(a) (b) (c)	Which address sequencing capabilities are required in a control memory? Explain any four Arithmetic operations carried out by ALU. Discuss various memory hierarchies.	03 04 07
	(c)	Explain the concept of Address Translation and working of the Translation Look-Aside Buffer.	07
Q.3	(a) (b) (c)	Discuss the importance of "control word" in a processor. Justify the use of STA instruction in assembly program with an example. Apply J K flip-flops to design a 3-bit synchronous binary counter.	03 04 07
Q.3	(a) (b) (c)	Analyze the 20-bits microinstruction code format with 7 bit used for address. Apply BUN instruction in assembly program that needs to use a looped sub- routine to check a flag. Apply the combinational circuits to design a 4-bit adder/subtracter circuit which performs subtraction using 2's complement.	03 04 07
Q.4	(a)	Calculate and show the number of clock cycles required to execute BSA instruction	03
	(b) (c)	Write assembly program for the arithmetic shift-left operation on a number stored in register B. Stop the program in case of overflow. What is the fundamental difference between a subroutine call and an interrupt request? Analyze the possibility of common memory stack for both.	04 07
Q.4	(a)	Show the working of LDA instruction using RTL.	03
	(b)	Write a program in assembly language to multiply two numbers in registers B and C in case the processor has only ADD instruction.	04
	(c)	A subroutine return address can be stored in an index register instead of a stack. Analyze the advantages and disadvantages of both configurations.	07
Q.5	(a)	A RAM operates with 8-bit data bus, 2 chip select lines and 7-bit address lines. Calculate the number of such RAM chips required to have 512 bytes of main memory.	03

- (b) An address space is specified by 24 bits and the corresponding memory space 04 by 16 bits. How many words are there in the address space and in the memory space?
- (c) Discuss various Dynamic Arbitration Algorithms for Interprocessor 07 Arbitration.

OR

- Q.5 (a) Calculate the size of a ROM chip which operates using 8-bit data bus, two 03 chip select lines and 9-bit address bus.
 - (b) How many 128 x 8 RAM chips are needed to provide a memory capacity of 04 4096 bytes?
 - (c) Discuss in brief the interconnection structures of a multiprocessor system. 07
