GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (NEW) EXAMINATION – WINTER 2023

Subject Code:3140702

Subject Name: Operating System

Time:10:30 AM TO 01:00 PM

Total Marks:70

Date:11-01-2024

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a) (b) (c)	Define true virtualization with example. Write a shell script to find factorial of an user-defined natural number. Draw and explain seven state process state transition diagram in detail	03 04 07
	(C)	Draw and explain seven state process state transition diagram in detail.	07
02	(2)	Explain the main function of a dispatcher in brief	03
Q.2	(a) (b)	List and briefly define four classes of real-time scheduling algorithms	03
	(c)	Five batch jobs A, B, C, D and E arrive at same time. They have	07
		estimated running times 10, 6, 3, 4 and 8 ms. For each of the following algorithm determine mean process turnaround time. Consider process swapping overhead is 1 ms.	
		1) FCFS 2) Bound Bohin (Time quantum - 2 me)	
		2) Round-Robin (Time quantum = 2 ms) \mathbf{OP}	
	(c)	Five batch jobs P1 P2 P3 P4 and P5 arrive at 0 1 2 3 and 4 ms. They	07
	(t)	have estimated running times 14 12 8 3 and 6 ms. Their priorities are	07
		3. 5. 2. 1 and 4 respectively with 5 being highest priority. For each of	
		the following algorithm determine mean process turnaround time.	
		Consider process swapping overhead is 0.5 ms.	
		1) SJF (Non-preemptive)	
		2) Priority Scheduling (Preemptive)	
03	(a)	Give the difference between weak semanhore and strong semanhore	03
Q.J	(a) (b)	Briefly explain critical section.	03
	(c)	Explain producer-consumer problem and solve it using semaphore.	07
		Write pseudo code for the same.	
		OR	
Q.3	(a)	Give the key difference between a mutex and a binary semaphore.	03
	(b)	List the requirements for mutual exclusion.	04
	(c)	Explain Dining philosopher problem and its solution using semaphore.	07
0.4	(a)	Explain I/O buffering in brief.	03
C.	(b)	Write a short note on Access Control List.	04
	(c)	Write and explain Banker's Algorithm for deadlock avoidance with suitable example.	07
		OR	
Q.4	(a)	Compare RAID level 3 with RAID level 4.	03
	(b)	Write a short note on design principles of OS security.	04

(c) Write and explain deadlock detection algorithm with suitable example. 07

Q.5	(a) (b)	 Explain concept of thrashing. Given the following track requests in the disk queue, compute for the Total Head Movement (THM) of the read/write head and seek time needed for SSTF Disk Scheduling approach: 86, 147, 91, 230, 94, 168, 270, 30 Consider that the read/write head is positioned at location 150. A seek 	03 04
	(c)	takes 3 ms per cylinder move. Consider a disk drive with 300 cylinders. Explain any three memory placement algorithms with suitable example. OR	07
Q.5	(a) (b) (c)	Compare and contrast paging with fragmentation. Given the following track requests in the disk queue, compute for the Total Head Movement (THM) of the read/write head and seek time needed for C-SCAN Disk Scheduling approach: 95, 180, 34, 119, 11, 123, 62, 64 Consider that the read/write head is positioned at location 50. A seek takes 5 ms per cylinder move. Consider a disk drive with 200 cylinders. Explain any three page replacement algorithms with suitable example.	03 04 07
