	S S	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-I (NEW) EXAMINATION – WINTER 2023 Subject Code:3110015 Date:23-01-2024 Subject Name: Mathematics - 2	
	Т Б	Cime: 02:30 PM TO 05:30 PM Total Marks:70 nstructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	Define Solenoidal Vector field. Find the constant a such that the vector	MARKS 03
		$(x+3)$ $\hat{\imath} + (y-2z)\hat{\jmath} + (x+az)\hat{k}$ is solenoidal.	
	(b)	If $\bar{F} = 3x^2y\hat{\imath} + (x^3 - 2yz^2)\hat{\jmath} + (3z^2 - 2y^2z)\hat{k}$, is conservative, then find	04
		 (i) its scalar potential φ. (ii) the work done in moving from (2,1,1) to (3,0,1). 	
	(c)	Verify Green's theorem in the plane for $\oint_C (xy^2 - 2xy)dx + (x^2y + 3) dy$, where C is the region bounded by the rectangle with vertices $(-1,0), (1,0), (1,1)$ and $(-1,1)$.	07
Q.2	(a)	State first shifting theorem for Laplace transform.	03
		Evaluate (i) $L[e^{-t}t^5]$ (ii) $L^{-1}\left[\frac{1}{s^2+2s+2}\right]$.	
	(b)	Find (i) $L\left[\frac{1-\cos 2t}{t}\right]$ (ii) $L^{-1}\left[\frac{54}{(s^2+9)(s^2-9)}\right]$.	04
	(c)	Using Laplace transform solve the initial value problem:	07
		y'' - y = t, with $y(0) = 1$, $y'(0) = -1$. OR	
	(c)	Find the Fourier sine integral of $f(x) = e^{-bx}$ and show that	07
		$\frac{\pi}{2} e^{-bx} = \int_0^\infty \frac{\lambda \sin \lambda x}{\lambda^2 + b^2} d\lambda.$	
Q.3	(a)	Define linear differential equation. Solve: $\frac{dy}{dx} + y = e^{-x}$, given that $y(1) = 1$.	03
	(b)	Solve: (i) $(D^2 + 7D - 18)y = 0$, (ii) $y'' + y' + 2y = 0$.	04
	(c)	(i) Solve: $(x + y - 1)dx + (2x + 2y - 3)dy = 0$, (ii) Solve: $x^2 p^2 - 4y^2 = 0$.	07
OR			
Q.3	(a)	Solve: $y^2 \frac{dx}{dy} + yx = y^3 x^2$.	03

(b) Determine a second solution of
$$x^2 \frac{d^2 y}{dx^2} - 2y = 0, x > 0$$
, where first solution is $y_1 = \frac{1}{x}$. 04

1

- (c) (i) Solve: $p = \sin(y px)$, (ii) Solve: $(x^3 + y^3)dx - xy^2dy = 0$. (7)
- **Q.4** (a) Solve: $(D^2 + 3D + 2)y = \sin 2x$. 03
 - (b) Solve: $x^3 y''' + x^2 y'' = x^3$. 04
 - (c) Using the method of undetermined coefficients solve $y'' + 9y = 2x^2$. 07

OR

- **Q.4** (a) Solve: $(D^2 + 4D)y = x + x^2$. 03
 - **(b)** Solve: $(D^2 6D + 9)y = x^2 e^{3x}$.
 - (c) Using the method of variation of parameters solve: $y'' 2y' + y = xe^x \sin x$. 07
- Q.5 (a) Determine the singular points of the differential equation $2x(x-2)^2 y'' + 3xy' + 03(x-2)y = 0$ and classify them as regular or irregular.
 - (b) Find the series solution of y'' y' = 0. 04
 - (c) Solve the differential equation 3xy'' (x 2)y' + 2y = 0 by using Frobenius method. 07

OR

- Q.5 (a) Discuss about the ordinary points, regular singular points and irregular singular points for 03 the differential equation $x^3y'' + 5xy' + 3y = 0$.
 - (b) Find the power series solution of y' + 2xy = 0 in powers of x. 04
 - (c) (i) Express J₃(x) in terms of J₁(x) and J₂(x).
 (ii) Express f(x) = 4x³ + 6x² + 7x + 1 in terms of Legendre's polynomials.

04

07