GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI(NEW) EXAMINATION – WINTER 2022

Subject Code:3160704 EXAMINATION – WINTER 2022 Date:13-12-2022

Subject Name: Theory of Computation Time: 02:30 PM TO 05:00 PM

Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

- (a) Define the following functions: one-one, on-to, and inverse. 03 0.1 (b) Prove "There must be a prime number between n and n!" 04 07 (c) Write down 5-tuple definition for the finite automata. Construct the minimal finite automata over $\Sigma = \{a, b\}$ for the following languages. $L1 = \{$ Where all the strings start and ends with different symbol $\}$ $L2 = \{Where every string has odd occurrences of "ba"\}$ Q.2 (a) Enlist types of grammars, types of languages and types of automata. 03 (b) Define pumping lemma for regular language. 04 Show that the language L= $\{a^nb^nc^n / n \ge 1\}$ is non-regular using pumping lemma theory.
 - (c) Construct the Moore machine that counts the no. of occurrences of substring "bba" over Σ = {a,b}. Now convert this Moore machine into Mealy machine. Show the transition table and transition diagram for both the machines.

OR

(c) Define the steps to convert ϵ -NFA into NFA. Then convert the following 07 ϵ -NFA into NFA.

Q.3	(a)	Define type 2 grammar with example.	03
	(b)	Construct the regular expressions for the following languages.	04
		L1 = {Where the no. of 'a' is odd}, $\Sigma = \{a,b\}$	
		L2 = {Where every string starts with '0' and of even length}, $\Sigma = \{0,1\}$	
	(c)	What is Instantaneous Description? Construct the pushdown automata	07
		over $\Sigma = \{a,b\}$ for the language $L = \{a^n c b^n / n \ge 1\}$.	

		OR	
Q.3	(a)	Define the following operations for Push Down Automata: PUSH, POP, and SKIP.	03
	(b)	Construct the regular expressions for the following languages. $L1 = \{Where every string starts with 'b' and does not contain 2 consecutive a's\}, \Sigma = \{a,b\}$	04
	(c)	L2 = {Where every string starts with '1' and of odd length}, $\Sigma = \{0,1\}$ Define: CNF. Show the steps to convert CFG into CNF. Convert the following CFG into equivalent CNF. S \rightarrow T U	07
		$T \rightarrow 0T1 \mid \varepsilon$ $U \rightarrow 1U0 \mid \varepsilon$	
Q.4	(a)	Enlist and explain the operations performed by tape in turing machine.	03
	(b)	Define pumping lemma for context free language. Show that the language $L = \{ww / w \in \{a,b\}^*\}$ is not context free language using pumping lemma theory.	04
	(c)	Explain ambiguous and unambiguous context free grammar with example. OR	07
Q.4	(a)	Enlist closure properties for the context sensitive language.	03
	(b)	Discuss universal turing machine with example.	04
	(c)	Write down 7-tuple definition for the turing machine. Construct the turing machine and its transition table over $\Sigma = \{a,b\}$ for the language L = $\{a^nb^n / n \ge 1\}$.	07
Q.5	(a)	State the following functions: Partial, Constant and Total.	03
	(b)	What is minimization? Explain with suitable example.	04
	(c)	Discuss Post's Correspondence Problem with example.	07
		OR	
Q.5	(a)	Define the following terms: Recursive language, and Recursive Enumerable Language.	03
	(b)	Explain in detail: Class P and Class NP.	04
	(c)	Describe: Recursive function. Prove that every recursive function is computable.	07
