Seat No.:	Enrolment No.
3Cat 110	Lindincht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI(NEW) EXAMINATION - WINTER 2022

Subject Name:Earthquake Engineering

Time:02:30 PM TO 05:00 PM	Total Marks:70
---------------------------	----------------

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- 5. Use of IS 1893 and IS 13920 is permitted.

			Marks
Q.1	(a)	What are the known causes of earthquake?	03
	(b)	Enlist various IS codes applicable to earthquake engineering.	04
	(c)	Elaborate on the seismic waves developed during earthquake and its effects	07
		on structure.	
Q.2	(a)	Differentiate between static loading and dynamic loading.	03
	(b)	Write short note on mathematical modeling.	04
	(c)	Derive the motion equation for the free damped vibration.	07
		OR	
	(c)	A SDOF vibrating system is consisting of a mass = 160 kg, spring stiffness	07
		= 160 N/m, and c = 30 N-sec/m. determine (i) Natural frequency of	
		damped vibration (ii) Damping ratio (iii) logarithmic decrement (iv) Ratio	
		of two successive amplitudes.	
Q.3	(a)	Differentiate the following terms	03
		1. Storey drift and storey shear	
		2. Importance factor and response reduction factor	
	(b)	Give details of expected damages by Earthquake in structures with 1. Short	04
		columns, 2. Building frames without shear panels, 3. Floating columns, 4.	
		Unsymmetrical plan	
	(c)	List the four virtues of good earthquake resistance design and describe in	07
		detail.	
		O.D.	

OR

- Q.3 (a) Write zone factor [Z] values as per IS 1893-part I.
 (b) Explain soft storey & discuss its performance of soft storey building in past
 04
 - (b) Explain soft storey & discuss its performance of soft storey building in past earthquakes. How will you avoid soft storey?

	(c)	Explain the step wise procedure to find the base shear of multistory	07
		building with seismic coefficient method with codal provisions.	
Q.4	(a)	List assumptions made in Cantilever method of lateral load analysis.	03
	(b)	How torsionally couple system is differing from torsionally uncouple	04
	(,-)	system? Discuss it with neat sketches.	
	(c)	Discuss in detail the concepts of the ductile detailing in Beams as per IS:	07
		13920. Write clear codal provisions.	
		OR	
Q.4	(a)	Explain repair, restoration and retrofitting.	03
	(b)	Describe importance of shear wall in multistoried Buildings	04
	(c)	Explain Earthquake Resistant Design Philosophy. Differentiate between	07
		Earthquake Proof Design and Earthquake Resistant Design.	
Q.5	(a)	Explain how ductile design is helpful for better earthquake resistance.	03
	(b)	Define following	04
		(1) Magnitude of Earthquake (2) Intensity	
		(3) Focus (4) Epicenter	
	(c)	Explain the concept of base isolation. Discuss its suitability.	07
		OR	
Q.5	(a)	Enlist required conditions for liquefaction. Also suggest remedial measures	03
		for the same.	
	(b)	Explain with neat sketches the techniques of Column Jacketing.	04
	(c)	Locate the center of mass and center of stiffness for the Fig-1. All column	07

sizes are 350 mm x 650 mm.
