Seat No.:	

Enro	lment	Nο		
CHIO	шеш	INO.		

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(NEW) EXAMINATION – WINTER 2022 Subject Code:3140708 Date:16-12-2022

Subject Name:Discrete Mathematics

Time:10:30 AM TO 01:00 PM

Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

- Q.1 (a) A committee 5 persons, is to be formed from 6 men and 4 women. In how many ways this can be done when (i) at least 2 women are included, (ii) at most 2 women are included.
 - **(b)** If $A = \{4,5,7,8,10\}$, $B = \{4,5,9\}$ and $C = \{1,4,6,9\}$, then verify that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
 - (c) Define Functionally complete set of connectives, Principal Disjunctive Normal Form (PDNF). Obtain PDNF for the expression $\neg((p \land q) \lor (\neg p \land q) \lor (q \land r))$
- Q.2 (a) Define Partial Order Relation. Illustrate with an example.
 - (b) Define one one function. Show that the function $f: R \to R$, **04** f(x) = 3x 7 is one one and onto both. Also find its inverse.
 - (c) Solve the recurrence relation $a_{n+2} 5a_{n+1} + 6a_n = 2$ with initial condition $a_0 = 1$ and $a_1 = -1$ using method of undetermined coefficients.

OR

- (c) Use generating function to solve a recurrence relation $a_n = 3a_{n-1} + 2$ with $a_0 = 1$.
- Q.3 (a) Define Partition of a Set. Let $A = \{1, 2, 3, 4, 5\}$ and 03 $R = \{(1,2),(1,1),(2,1),(2,2),(3,3),(4,4),(5,5)\}$ be an equivalence relation on A. Determine the partition for R^{-1} , if it an equivalence relation.
 - (b) Draw Hasse Diagram for the lattice (S_{30}, D) where S_{30} is the set of divisors of 30 and D is the relation divides.
 - Show that the set *S* of all matrices of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ where $a, b \in R$ is a field with respect to matrix addition and matrix multiplication.

OR

Q.3 (a) Define Semi Group, Monoid. Give an example of an algebraic structure which is semi group but not monoid.

	(1.)		0.4
	(D)	Consider the a relation R defined on $A = \{1, 2, 3\}$ whose matrix	04
		representation is given below. Determine its inverse R^{-1} and complement R' .	
		$M_R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	
	(c)	Define free variable and bound variable.	07
		Rewrite the following argument using quantifiers, variables and predicate symbols. Prove the validity of the argument.	
		"All healthy people eat an apple a day.	
		Ram does not eat apple a day.	
		Ram is not a healthy person."	
Q.4	(a)	Define Abelian group and prove that the set $\{0,1,2,3,4\}$ is a finite abelian	03
	(b)	group under addition modulo 5 as binary operation. Define even permutation. Show that the permutation	04
	(b)	Define even permutation. Show that the permutation (1 2 3 4 5 6) (1 2 3 4 5 6)	V 4
		$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3 \end{pmatrix} $ is odd and $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1 \end{pmatrix} $ is even.	
	(c)	Define Principal Ideal. Find all the principal Ideal of the ring	07
		$[\{0,1,2,3,4,5\},+_6,\times_6].$	
2.4	()	OR	0.2
2.4	(a)	Define cut vertex. List out all the cut vertices of the graph given in Figure 1.	03
	(b)	Define adjacency matrix and path matrix of a graph. Find out adjacency	04
	(c)	matrix for the graph given in Figure 1. Define the terms: Simple Graph, Multi – Graph, Weighted Graph, Degree	07
	(C)	of a vertex, in degree and out degree of a vertex. Illustrate each with an	07
		example.	
Q.5	(a)	State Lagrange's theorem and find out all possible subgroups of group	03
		$\lceil \{1,-1,i,-i\}, \times \rceil$.	
	(b)	Define Eulerian graph, Planar Graph.	04
		Justify whether the graph given in Figure 1 is Planer or not using Euler's formula.	
	(c)	Define Binary tree, Spanning tree, Minimal Spanning tree, Find the	07
		minimal spanning tree for the weighted graph given in Figure 2.	
0.5	(a)	OR Define Cyclic group, Normal subgroup. Illustrate with an example.	03
·-	(b)	Form a binary search tree for the data 16,24,7,5,8,20,40,3.	04
	(c)	Explain Post order traversal. Given the postorder and inorder traversal of a binary tree, draw the unique binary tree.	07
		Postorder: d e c f b h i g a	
		Inorder: d c e b f a h g i.	

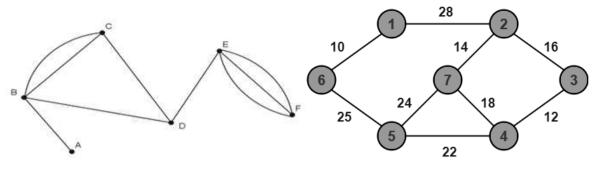


Figure 1 Figure 2
