GUJARAT TECHNOLOGICAL UNIVERSITY				
Subj	BE - SEMESTER- VI (NEW) EXAMINATION - WINTER 2021 Subject Code:3160704 Date:24/2			
Subje Time Instrue	ect N: :10:3 ctions: 1. A 2. M 3. F 4. Si	ame:Theory of Computation 0 AM TO 01:00 PM Total .ttempt all questions. Take suitable assumptions wherever necessary. igures to the right indicate full marks. imple and non-programmable scientific calculators are allowed.	Marks: 70	
			MARKS	
Q.1	(a)	Define one-to-one, onto and bijection function	03	
	(b)	The given relation R on set A= $\{1,2,3\}$ determine whether the Relation is reflexive, symmetric or transitive, give reason. R = $\{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (3,3)\}$	04	
	(c)	Write Principle of Mathematical Induction. Prove that for every $n \ge 1$, $1 + 3 + 5 + + (2n - 1) = n^2$	07	
Q.2	(a)	Define FA and Write recursive definition of NFA	03	
	(b)	 Find a regular expression of following subsets of {0, 1}* 1. The language of all strings that begin or end with 00 or 11. 2. The language of all strings ending with 1 and not containing 00 	04	
	(c)	 Draw Finite Automata to accept following over input alphabets Σ ={0, 1 (i) The language accepting strings not ending with '01'. (ii) The language accepting strings next to last symbol '0' 	} 07	
	(c)	Let M1 and M2 be the FAs pictured in Figure, recognizing languages L	07	
		and L ₂ respectively. $M_1 = $	-	

Draw FAs recognizing the following languages.

a. L1 U L2

b. L1 - L2

- Q.3 (a) Give the difference between moore machine and mealy machine. 03
 - (b) Define Context Free Grammar. Find context-free grammar for the language: 04 $L = \{a^i b^j c^k \mid j=i+k\}$

(c) Convert NFA- Λ to FA for following figure.

OR

- Q.3 (a) Define Ambiguous grammar. for following grammar say whether the 03 grammar is ambiguous or not. give reason $S \rightarrow ABA, A \rightarrow aA \mid A, B \rightarrow bB \mid A$
 - (b) Design and mealy machine that gives output 1 if input of sequence abb 04 comes, other wise 0.
 - (c) Find minimum state FA for following figure.

Q.4	(a)	State pumping lemma for regular languages.	03
	(b)	Give an unambiguous grammar for SIMPLE CALCULATOR contain +, -,	04
	. ,	*, /,(,) operator for terminal 'id'. And draw a parse tree for (id+id)*id-id	
	(c)	Write Kleen's Theorem part -1.	07
		OR	
Q.4	(a)	Find the CFG for the regular expression : $(01*1+1)*(01)*$	03
-	(b)	Using kleene's Theorem Draw NFA- Λ for $((0+1)*10 + (00)*)*$	04
	(c)	Given the context-free grammar G, find a CFG G' in Chomsky Normal	07
		Form.	
		$S \rightarrow AaA \mid CA \mid BaB$	
		$A \rightarrow aaBa \mid DC$	
		$B \rightarrow bb \mid aS$	
		$C \rightarrow Ca \mid bC \mid D$	
		$D \rightarrow bD \Lambda$	
05	(a)	Define Pushdown Automata	03
Q.5	(a) (b)	Design a PDA to accept $I = \{x \in v \mid x, y \in (a, b) \}$ and $ x = y $	03
	(U) (c)	Develop a Turing Machine to accept palindromes over $\{a, b\}^*$	07
	(U)	OP	07
0.5	(a)	Define grammar and Chomeky hierarchy	02
Q.5	(a) (b)	Design a PDA to accept $I = \{a^n b^n \mid n > -0\}$	03
	(U) (-)	Design a FDA to accept $L = \{a \mid b \mid b \neq 0\}$.	04
	(C)	Develop a Turning Machine to accept the language $L = \{X \mid N_a(X) = N_b(X), X \in \{a,b\}^*\}$	U7

07

07