\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VI (NEW) EXAMINATION - WINTER 2021

Subject Code:3160704
Date:24/11/2021
Subject Name:Theory of Computation
Time:10:30 AM TO 01:00 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
MARKS
Q. 1 (a) Define one-to-one, onto and bijection function 03
(b) The given relation R on set $\mathrm{A}=\{1,2,3\}$ determine whether the 04Relation is reflexive, symmetric or transitive, give reason.$R=\{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),(3,3)\}$
(c) Write Principle of Mathematical Induction. Prove that for07every $\mathrm{n} \geq 1,1+3+5+\ldots+(2 \mathrm{n}-1)=\mathrm{n}^{2}$
Q. 2 (a) Define FA and Write recursive definition of NFA 03
(b) Find a regular expression of following subsets of $\{0,1\}^{*}$ 041. The language of all strings that begin or end with 00 or 11 .2. The language of all strings ending with 1 and not containing 00 .(c) Draw Finite Automata to accept following over input alphabets $\Sigma=\{0,1\}$07
(i) The language accepting strings not ending with ' 01 '.
(ii)The language accepting strings next to last symbol ' 0 '
OR
(c) Let M1 and M2 be the FAs pictured in Figure, recognizing languages L1 and L 2 respectively.

Draw FAs recognizing the following languages.

$$
\begin{array}{ccc}
\text { a. } & \text { L1 } & \text { U L2 } \\
\text { b. } & \text { L1 } & - \text { L2 }
\end{array}
$$

Q. 3 (a) Give the difference between moore machine and mealy machine. 03
(b) Define Context Free Grammar. Find context-free grammar for the language: 04

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{i}} \mathrm{~b}^{\mathrm{j}} \mathrm{c}^{\mathrm{l}} \mid \mathrm{j}=\mathrm{i}+\mathrm{k}\right\}
$$

(c) Convert NFA- Λ to FA for following figure.

OR
Q. 3 (a) Define Ambiguous grammar. for following grammar say whether the grammar is ambiguous or not. give reason $\mathrm{S} \rightarrow \mathrm{ABA}, \mathrm{A} \rightarrow \mathrm{aA}|\Lambda, \mathrm{B} \rightarrow \mathrm{bB}| \Lambda$
(b) Design and mealy machine that gives output 1 if input of sequence abb comes, other wise 0 .
(c) Find minimum state FA for following figure.

Q. 4 (a) State pumping lemma for regular languages. 03
(b) Give an unambiguous grammar for SIMPLE CALCULATOR contain + , -, $\mathbf{0 4}$
*, $/,($, , operator for terminal 'id'. And draw a parse tree for (id+id)*id-id
(c) Write Kleen's Theorem part -1 .

OR

Q. 4 (a) Find the CFG for the regular expression : $\left(01^{*} 1+1\right)^{*}(01)^{*} \mathbf{0 3}$
(b) Using kleene's Theorem Draw NFA- Λ for $\left((0+1)^{*} 10+(00)^{*}\right)^{*}$
(c) Given the context-free grammar G, find a CFG G' in Chomsky Normal Form.

$$
\begin{aligned}
& \text { S -> AaA }|\mathrm{CA}| \mathrm{BaB} \\
& \text { A }-\mathrm{aaBa} \mid \mathrm{DC} \\
& \mathrm{~B}->\mathrm{bb} \mid \mathrm{aS} \\
& \mathrm{C}->\mathrm{Ca}|\mathrm{bC}| \mathrm{D} \\
& \mathrm{D}->\mathrm{bD} \mid \Lambda
\end{aligned}
$$

Q. 5 (a) Define Pushdown Automata 03
(b) Design a PDA to accept $\mathrm{L}=\left\{\mathrm{xcy} \mid \mathrm{x}, \mathrm{y} \in(\mathrm{a}, \mathrm{b})^{*}\right.$ and $\left.|\mathrm{x}|=|\mathrm{y}|\right\}$. 04
(c) Develop a Turing Machine to accept palindromes over $\{\mathrm{a}, \mathrm{b}\}^{*}$ 07
OR
Q. 5 (a) Define grammar and Chomsky hierarchy. 03
(b) Design a PDA to accept $L=\left\{a^{n} b^{n} \mid n>=0\right\}$. 04
(c) Develop a Turing Machine to accept the language $\mathrm{L}=\left\{\mathrm{X} / \mathrm{N}_{\mathrm{a}}(\mathrm{X})=\mathrm{N}_{\mathrm{b}}(\mathrm{X})\right.$, 07 $\left.X \in\{a, b\}^{*}\right\}$

