GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER–IV (NEW) EXAMINATION – WINTER 2021 Code:3140912 Date:01/01/2022

Subject Code:3140912

Subject Name: Electromagnetic Fields

Time:10:30 AM TO 01:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a) (b) (c)	State and explain Coulomb's law. State and explain Gauss's law. Explain and draw the figure for the orthogonal system which has its spherical coordinate is angle made be cone and z-axis. Transform the spherical coordinate system to Cartesian coordinate system.	03 04 07
Q.2	(a)	State and Explain various types of charge distribution with mathematical equation.	03
	(b)	Derive relation between current density and Volume charge Density.	04
	(c)	Obtain the spherical co-ordinates of $10\bar{a}_x$ at the point P(x= - $3x-2x-4$)	07
		OR	
	(c)	An infinite uniform linear charge $\rho_L=2$ nC/m line along the x axis in free space, while charge of 8 nC is located at (0,0,1) find E at (2,3, - 4).	07
Q.3	(a)	Explain boundary conditions between two perfect dielectric materials.	03
	(b) (c)	Explain phenomenon of polarization Evaluate both sides of the divergence theorem for the filed $\overline{D} = 2xy\overline{a} + x^2\overline{a}$ C/m ² and the rectangular parallelopiped formed	04 07
		by the planes $x=0$ and 1, $y=0$ and 2, $z=0$ and 3.	
0.3	(a)	Define conservative field	03
	(b)	Explain Electrical field as the Gradient of the electrical potential	04
	(c)	Obtain the expression for field intensity H at the centre of a circular carrying current I, using Bio-Savart Law.	07
Q.4	(a)	Explain Characteristics impedance and propagation constant of the transmission line.	03
	(b)	State Maxwell's equation in point form and integral form for static electromagnetic field.	04
	(c)	A dielectric free space has equation $3x+2y+z=12$ m, The origin	07
		side of the interface has $\varepsilon r = 3$ and $\varepsilon = 2\overline{a}_x + 5\overline{a}_z$ V/m. Find $\varepsilon = 2\overline{a}_z$.	
		OR	
Q.4	(a)	Give examples of different capacitor configuration.	03
-	(b)	Explain polarization with reference to dielectrics	04
	(c)	Obtain the Expression for field intensity H at the center of a circular carrying current I, using Biot-Savart law.	07
Q.5	(a)	Write Effect of Electromagnetic Interference.	03

	(b)	Explain magnetic dipole moment.	04
	(c)	Define potential difference and potential gradient. Also Establish	07
		relation between Electrical field and potential gradient.	
		OR	
Q.5	(a)	Write Poisson's and Laplace equation. also state use of this equation and uniqueness theorem	03
	(b)	State and explain source of EMI.	04
	(c)	Derive transmission line equation with help of equivalent circuit.	07
