Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2021

Subject Code:3140708 Date:24/12/2021

Subject Name:Discrete Mathematics

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Show that for any two sets A and B, $A (A \cap B) = A B$.
 - (b) If $S = \{a, b, c\}$, find nonempty disjoint sets A_1 and A_2 such that $A_1 \cup A_2 = S$. **04** Find the other solutions to this problem.
 - (c) Using truth table state whether each of the following implication is tautology. 07
 - a) $(p \land r) \rightarrow p$
 - b) $(p \land q) \rightarrow (p \rightarrow q)$
 - c) $p \rightarrow (p \lor q)$
- Q-2 (a) Given $S = \{1, 2, 3, ---, 10\}$ and a relation R on S. Where, $R = \{\langle x, y \rangle | x + y = 10\}$. What are the properties of relation R?
 - (b) Let L denotes the relation "less than or equal to" and D denotes the relation "divides". Where xDy means "x divides y". Both L and D are defined on the set $\{1, 2, 3, 6\}$. Write L and D as sets, find $L \cap D$.
 - (c) Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{\langle x, y \rangle | x y \text{ is divisible by 3} \}$. Show that R is an equivalence relation on. Draw the graph of R.

OR

(b) Define equivalence class generated by an element $x \in X$. Let Z be the set of integers and let R be the relation called "congruence modulo 3" defined by $R = \{(x, y) | y \in Z \land y \in Z \land (x, y) \text{ is divisible by } 2\}$

 $R = \{\langle x, y \rangle | x \in Z \land y \in Z \land (x - y) \text{ is divisible by 3} \}$

- Determine the equivalences classes generated by the element of Z.
- Q.3 (a) Let f(x) be any real valued function. Show that $g(x) = \frac{f(x) + f(-x)}{2}$ is always an even function where as $h(x) = \frac{f(x) f(-x)}{2}$ is always an odd function.
 - (b) The Indian cricket team consist of 16 players. It includes 2 wicket keepers and 5 bowlers. In how many ways can cricket eleven be selected if we have select 1 wicket keeper and at least 4 bowlers?
 - (c) Let A be the set of factors of particular positive integer m and \leq be the relation divides, that is

 $\leq = \{\langle x, y \rangle | x \in A \land y \in A \land (x \text{ divides } y)\}$ Draw the Hasse diagrams for

- a) m = 45
- b) m = 210.

OR

- **Q-3** (a) Find the composition of two functions $f(x) = e^x$ and $g(x) = x^3$, $(f \circ g)(x)$ and $(g \circ f)(x)$. Hence, show that $(f \circ g)(x) \neq (g \circ f)(x)$.
 - (b) In a box, there are 5 black pens, 3 white pens and 4 red pens. In how many ways can 2 black pens, 2 white pens and 2 red pens can be chosen?
 - (c) Let A be a given finite set and $\rho(A)$ its power set. Let \subseteq be the inclusion relation on the elements of $\rho(A)$. Draw Hass diagram for $\langle \rho(A), \subseteq \rangle$ for
 - a) $A = \{a, b, c\}$
 - b) $A = \{a, b, c, d\}$

- **Q.4** (a) Let $\langle L, \leq \rangle$ be a lattice. Show that for $a, b, c \in L$, following inequalities holds. $a \oplus (b \star c) = (a \oplus b) \star (a \oplus c)$ $a \star (b \oplus c) = (a \star b) \oplus (a \star c)$
 - (b) Let $G = \{(a,b)|a,b \in R\}$. Define binary operation (*) on G as $(a,b),(c,d) \in G,(a,b)*(c,d) = (ac,bc+d)$. Show that an algebraic structure (G,*) is a group.

OR

- **Q-4** (a) Let G be the set of non-zero real numbers. Define binary operation (*) on G as $a * b = \frac{ab}{2}$. Show that an algebraic structure (G,*) is an abelian group.
 - (b) Explain the following terms with proper illustrations. 07
 - a) Directed graphs
 - b) Simple and elementary path
 - c) Reachability of a vertex
 - d) Connected graph.
- Q-5 (a) Show that sum of in-degrees of all the nodes of simple digraph is equal to the sum of out-degrees of all the nodes and this sum equal to the number of edges in it.
 - (b) Let = $\{1, 2, 3, 4\}$. For the relation R whose matrix is given, find the matrix of the transitive closure by using Warshall's algorithm.

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{OR}$$

- Q-5 (a) Define tree and root. Also prove that tree with n vertices has n-1 edges. 07
 - (b) Define in-degree and out-degree of a vertex and matrix of a relation. Let A = 07 $\{a, b, c, d\}$ and let R be the relation on A that has the matrix

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

07