		GUJARAT	TECHNOLOG	GICAL UNIV	ERSITY		
BE - SEMESTER-IV (NEW) EX							
Subject Code:3140702 Subject Name:Operating System Time:10:30 AM TO 01:00 PM Instructions:			G .	Date:31/12/2021 Total Marks: 70			
			U •)	
	2. 3.	Figures to the right	ons. mptions wherever nec t indicate full marks. ogrammable scientific	-	wed.		
Q.1	(a)	Define the following (1) System bus (2) Auxiliary n	3			(
	(b)	What do you mean	by cache memory? E	xplain the cache re	ad operation.	(
	(c)	What is process? Explain the process creation and termination.					
Q.2	(a)	Define the term critical section.					
	(b)	Difference between user level and kernel level thread.					
	(c)	Consider following processes with length of CPU burst time in milliseconds					
			Process	Burst time			
			P1	5			
			P2	10			
			P3	2			
			P4	1			
		(1) Draw gantt chrobin (quantum(2) Calculate wait	m=1) ing time for each process rage waiting time for each	tion of these proces	0 0	[
	(c)	-					
	(-)	What are various criteria for a good process scheduling algorithm? Explain any two preemptive scheduling algorithms in brief.					
Q.3	(a)	What is meant priority inversion?					
	(b)	What is the criterion used to select the time quantum in case of round-robin scheduling algorithm? Explain it with a suitable example.					
	(c)	What is Semanhore? Give the implementation of Bounded Ruffer Producer					

Consumer Problem using Semaphore. OR What is Deadlock? List the conditions that lead to deadlock. **Q.3** 03 (a) List criterions used to evaluate the performance of CPU scheduling algorithms. **(b)** 04 What is advantage of using Monitor? Give the implementation of Bounded Buffer **07** (c) Producer Consumer Problem using Monitor. **Q.4** What is resource allocation graph? 03 (a) Explain paging technique. 04 **(b)** Explain the following allocation algorithms: **07** (c)

		(3) Worst-fit			
		OR			
Q.4	(a)) When is a system in a safe state?			
	(b)	Explain segmentation.			
	(c)	What is fragmentation? Explain the difference between internal and external fragmentation.			
Q.5	(a)	Explain RAID. How it is helpful to increase CPU performance?			
	(b)	Explain the following Linux commands:			
		(1) mkdir			
		(2) touch			
		(3) cat			
		(4) rm			
	(c)	What do you mean by security? Discuss in brief access control list.	07		
		OR			
Q.5	(a)	Explain i/o buffering.	03		
	(b)	What is virtualization? Explain the benefits of virtualization.	04		
	(c)	Why is segmented paging important (as compared to a paging system)? What are	07		
		the different pieces of the virtual address in a segmented paging?			

(1) First-fit(2) Best-fit
