\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2021
Subject Code:3131102Date:21-02-2022
Subject Name:Digital System Design
Time:10:30 AM TO 01:00 PM Total Marks:70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) Draw the logic circuit for the following Boolean function using NAND gates only. 03

$$
F(x, y, z)=x y+y z+x z
$$

(b) State the De-Morgan's Law and find the complement of the following Boolean04 function in Product-of-Sum (POS) form using De-Morgan's Law.

$$
F(A, B, C, D)=A B^{\prime}(C+D)+C^{\prime} D\left(A^{\prime}+B\right)
$$

(c) Simplify the following Boolean function using Karnaugh Map (K-map) method.
$F(A, B, C, D)=\left(A^{\prime}+B^{\prime}+D^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+D^{\prime}\right)\left(B+C^{\prime}+D^{\prime}\right)$
Realize the simplified function using NOR Gates only.
Q. 2 (a) State the duality theorem. Also find the dual of the following Boolean expression. 03

$$
(x+y)\left(x^{\prime}+z\right)(y+z)=(x+y)\left(x^{\prime}+z\right)
$$

(b) Simplify the following Boolean expression using Boolean Algebra.
(i) $x^{\prime}+x y+x z^{\prime}+x y^{\prime} z^{\prime}$
(ii) $\boldsymbol{A}^{\prime} \boldsymbol{B}\left(\boldsymbol{D}^{\prime}+\boldsymbol{C}^{\prime} \boldsymbol{D}\right)+\boldsymbol{B}\left(\boldsymbol{A}+\boldsymbol{A}^{\prime} \boldsymbol{C} D\right)$
(c) Explain the working of Master-Slave SR Flip-flop with Logic diagram and waveforms.

OR

(c) Draw the logic circuit of 4-to-1 Multiplexer and explain its working with the help of truth-table.
Q. 3 (a) Draw truth-table and logic circuit for 2-bit magnitude comparator. 03
(b) Explain the following parameters for Digital Integrated Circuits.
(i) Fan-out
(ii) Fan-in
(iii)Propagation Delay
(iv)Noise Margin
(c) Find the prime implicants for the following Boolean function by means of the $\mathbf{0 7}$
Tabulation Method.

$$
\begin{gathered}
F(A, B, C, D, E)=\Sigma m(2,3,8,9,12,13,18,19,25,27,29,31) \\
\text { OR }
\end{gathered}
$$

Q. 3 (a) Explain working of 4-bit Binary Adder circuit with the neat logic diagram. $\mathbf{0 3}$
(b) Compare TTL and CMOS logic families. $\mathbf{0 4}$
(c) Simplify the following Boolean function \mathbf{F} together with the don't-care conditions $\mathbf{0 7}$ d in sum-of-products (SOP) using Karnaugh Map (K-map) method.
$F(A, B, C, D)=\Sigma m(3,4,13,15)$ and $d(A, B, C, D)=\Sigma m(l, 2,5,6,8,10,12,14)$
Q. 4 (a) State the difference between asynchronous and synchronous sequential logic 03
circuits with suitable example.
(b) What is State Machine? Explain the need of State Machine in Digital Systems.
(c) A sequential circuit with two D flip-flops (A and B); one input (x); and one output
(\boldsymbol{y}) is specified by the following state table:

Present State$(A B)$	Next State (AB)		Output (y)	
	$x=0$	$x=1$	$\boldsymbol{x}=0$	$x=1$
00	01	00	1	0
01	01	11	0	1
10	00	10	0	1
11	11	10	1	0

Derive the next-state equations, output equation and draw the state diagram. OR
Q. 4 (a) State and explain different types of triggering for Flip-flops. 03
(b) State the different types of Shift-Registers and explain working of the Serial-In 04
Serial-Out shift register with neat diagram.
(c) Design modulo-10 ripple up counter and explain its working using neat logic 07
diagram and waveforms.
Q. 5 (a) Define: Register, Ripple counter, Synchronous counter. 03
(b) State various types of Digital-to-Analog converters and briefly explain working 04principle of any.
(c) Draw and explain PLA block diagram. Also draw the Programmable Logic Array 07 with three inputs, three product terms, and two outputs.

OR

Q. 5 (a) Briefly explain the steps for VLSI design flow. 03
(b) Realize T Flip-flop functionality using D Flip-flop only. 04
(c) Explain dual slope type Analog-to-Digital converter in detail with neat diagram. 07

