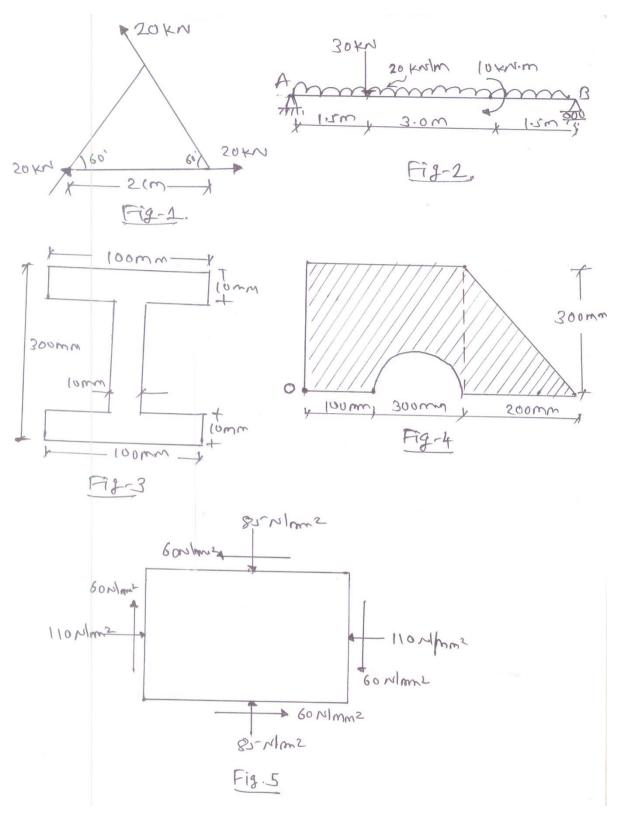
Seat No.:	Enrolment No.
3Cat 110	Lindincht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION – Subject Code:3130608			WINTER 2020 Date:06/03/2021 Total Marks:56	
Subject Name: Mechanics of Solids Time: 10:30 AM TO 12:30 PM Instructions:				
IIISt	1. 2.	Attempt any FOUR questions out of EIGHT questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a) (b)	Explain following terms (i) Rigid body, (ii) Deformable boo State Hook's low. Draw stress strain curve for Mild Steel Sp each point in detail.	· · · ·	03 04
	(c)	Three forces are acting on a weightless equilateral triangular Fig. 1. Determine magnitude, direction and position of result	-	07
Q.2	(a) (b) (c)	Explain: (i) Type of beams (ii) Type of loading on the beams. Determine support reaction for the given beam shown in Fig. 2. A simply supported beam 10 m long carries three point loads at 100 kN, 150 kN and 200 kN at 3m, 5m and 8m from left support. Draw S.F. and B.M. diagram for the beam.		03 04 07
Q.3	(a) (b) (c)	Discuss critically the assumption made in theory of Bending. A cantilever beam 2 m long has rectangular section 200 mm x 500 mm. Find out point load at free end of beam if permissible bending stress is 20N/mm². A beam of I-section, having 5 m length is simply supported at each end and bears a u.d.l. of 20 kN/m as shown in Fig. 3 . Determine maximum tensile and compressive bending stress.		03 04 07
Q.4	(a) (b) (c)	Derive with usual notations the theorem of perpendicular ax Derive relation between bulk modulus (K), Poisson's ratio of elasticity (E). A beam of I-section, having 5 m length is simply supported a a u.d.l. of 20 kN/m as shown in Fig. 3. Determine maximum	(1/m), and modulus t each end and bears	03 04 07
Q.5	(a) (b) (c)	Define: (1) Centroid (2) Center of gravity (3) Center of mas State and prove Pappu's guldinus theorem for surface area of Determine the location of centroid of plane lamina shown in to point O.	s. of bodies.	03 04 07
Q.6	(a) (b)	Write assumption made in the theory of torsion. A solid steel shaft is to transmit 120 kW power at 600 r.p.n of shaft if shear stress is to be limited to 100 N/mm ²	n. Find the diameter	03 04

Determine moment of inertia about base of a plane area as shown in Fig. 4.


(c)

07

- Define: (i) Modulus of Elasticity (ii) Poisson's ratio(iii) Modulus of rigidity 03 **Q.7** (a)
 - **(b)** In a tension test, a bar of 20 mm diameter undergoes elongation of 14 mm in a 04 gauge length of 150 mm and a decrease in diameter of 0.85 mm at a tensile load of 6 kN. Determine the two physical constants Poisson's ratio and modulus of elasticity of the material.
 - A steel rod 30 mm in diameter is inserted inside a brass tube of 30 mm internal **07** (c) diameter and 40 mm external diameter, the ends are rigidly connected together. The assembly is heated by 20°C. Find value and nature of stress developed in both the materials. Take, α for steel = 12 x 10⁻⁶ per °C, α for brass = 18 x 10⁻⁶ per °C.
 - E for steel = 200 GPa, E for brass = 80 GPa,
- **Q.8** Define principal planes and principal stresses. (a)
 - A R.C.C. column 300 mm in dia. is reinforced with 6 nos. of 16 mm diameter 04 **(b)** steel bars. If permissible stress in steel and concrete are 230 N/mm² and N/mm², respectively, find the load carrying capacity of the column.
 - The state of stress in two-dimensionally stress body at a point is shown in **07** 5. Determine principal stresses and maximum shear stress and its location of planes.

03
