Seat No.:	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- I & II (NEW) EXAMINATION - WINTER 2019

Subject Code: 3110015 Date: 01/01/2020

Subject Name: Mathematics –2

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

- Q.1 (a) Find the length of curve of the portion of the circular helix $\vec{r}(t) = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$ from t = 0 to $t = \pi$
 - (b) $\int_{(1,2)}^{(3,4)} (xy^2 + y^3) dx + (x^2y + 3xy^2) dy$ is independent of path joining the points (1, 2) and (3,4). Hence, evaluate the integral.
 - (c) Verify tangential form of Green's theorem for $\vec{F} = (x \sin y)\hat{i} + (\cos y)\hat{j}$, where C is the boundary of the region bounded by the lines $y = 0, x = \pi/2$ and y = x.
- Q.2 (a) Find the Laplace transform of f(t) defined as $f(t) = \frac{t}{k} \qquad 0 < t < k$ $= 1 \qquad t > k$
 - Find the inverse Laplace transform of $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$
 - (c) (i) Calculate the curl of the vector $xyz\hat{i} + 3x^2y\hat{j} + (xz^2 y^2z)\hat{k}$ (ii) The temperature at any point in space is given by T = xy + yz + zx. Determine the derivative of T in the direction of the vector $3\hat{i} 4\hat{k}$ at the point (1, 1, 1).

OR

- (c) Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $r = |\vec{r}|$, and \vec{a} is a constant vector. Find the value of $div\left(\frac{\vec{a} \times \vec{r}}{r^n}\right)$
- Q.3 (a) Find constants a, b and c such that 03 $\vec{V} = (x+2y+az)\hat{i} + (bx-3y-z)\hat{j} + (4x+cy+2z)\hat{k} \text{ is irrotational.}$
 - (b) Using Fourier cosine integral representation show that $\int_{0}^{\infty} \frac{\cos \omega x}{k^2 + \omega^2} d\omega = \frac{\pi e^{-kx}}{2k}$
 - (c) Solve the following differential equations: $(i) \cos(x+y) dy = dx$ 07
 - (ii) $\sec^2 y \frac{dy}{dx} + x \tan y = x^3$

Q.3	(a)	Find the Laplace transform of (i) $\int_{0}^{t} \frac{\sin t}{t} dt$ (ii) $t^{2}u(t-3)$	03
	(b)	Using Convolution theorem obtain $L^{-1}\left(\frac{1}{s(s^2+a^2)}\right)$	04
	(c)	Find the power series solution of $\frac{d^2y}{dx^2} + xy = 0$	07
Q.4	(a)	Find the Laplace transform of the waveform	03
		$f(t) = \left(\frac{2t}{3}\right), 0 \le t \le 3$	
	(b)	Using the Laplace transforms, find the solution of the initial value problem $y'' + 25y = 10\cos 5t$ $y(0) = 2$, $y'(0) = 0$	04
	(c)	Using variation of parameter method solve $(D^2 + 1)y = x \sin x$	07
	OR		
Q.4	(a)	Solve $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \frac{dy}{dx}$	03
	(b)	Solve $y''' - 3y'' + 3y' - y = 4e^t$	04
	(c)	Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$ using method of undetermined	07
		coefficients.	
Q.5	(a)	Classify the singular points of the equation $x^3(x-2)y'' + x^3y' + 6y = 0$	03
	(b)	Solve $(D^2+4)y = \cos 2x$	04
	(c)	Solve (i) $ye^x dx + (2y + e^x) dy = 0$ (ii) $\frac{dy}{dx} + 2y \tan x = \sin x$	07
OR			
Q.5	(a)	Solve $\frac{dy}{dx} = \frac{y^3}{e^{2x} + y^2}$	03
	(b)	If $y_1 = x$ is one of solution of $x^2y'' + xy' - y = 0$ find the second solution.	04
	(c)	Using Frobenius method solve $x^2y'' + 4xy' + (x^2 + 2)y = 0$	07
