\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1 $\mathbf{1}^{\text {st }} / 2^{\text {nd }}$ EXAMINATION (NEW SYLLABUS) - WINTER 2018
Subject Code: 2110015
Date: 03/01/2019
Subject Name: Vector Calculus and Linear Algebra
Time:10:30 AM TO 1:30 PM
Total Marks: 70 Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. $1 \quad$ Objective Question (MCQ)

(a)

Marks
07

1. For a square matrix A, if $A \cdot A^{T}=I$, then A is
(a) Symmetric
(b) Skew-symmetric
(c) Orthogonal
(d) Singular
2. For inner product defined by $\langle p, q\rangle=\int_{-1}^{1} p \cdot q d x$, value of $\|x\|$ is
(a) $\sqrt{2 / 3}$
(b) $2 / 3$
(c) 0
(d) 2
3. The number of vectors in a basis for vector space is known as
(a)degree
(b) order
(c) dimension
(d) zeros
4. Which is the standard basis vector of R^{3} ?
(a) $(1,1,1)$
(b) $(1,0,1)$
(c) $(0,0,0)$
(d) $(1,0,0)$
5. Which of the following is in reduced row echelon form?
(a) $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right.$
$\left.\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
6. For homogeneous system of equations $A X=0$, if $|A| \neq 0$, then the system has
(a)trivial solution
(b) non trivial solution
(c) infinite no. of solutions
(d) no solution
7. Which is not correct for the matrices?
(a) $\left(A^{T}\right)^{T}=A$
(b) $(A B)^{T}=A^{T} B^{T}$
(c) $A^{0}=I$
(d) None of these
(b)
8. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is
(a) negative definite (b) positive definite
(c) indefinite (d) positive semi definite
9.

If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 5 & 0 \\ -7 & 8 & 2\end{array}\right]$, then eigen values of A^{-1} are
(a) $1,5,2$
(b) $-1,-5,-2$
(c) $0,0,0$
(d) $1, \frac{1}{5}, \frac{1}{2}$
3. Which of the following linear transformation is one to one?
(a) $T(x, y)=(8 x+4 y, 2 x+y)$
(b) $T(x, y)=(x+2 y,-x+y)$
(c) $T(x, y)=(4 x-6 y,-2 x+3 y)$
(d) None of these
4. Find the value of ' a ' if $\bar{F}=(x+3 y) i+(y-2 z) j+(a z+x) k$ is solenoidal.
(a) 2
(b) 1
(c) -2
(d) 0
5. Rank of the identity matrix I_{n} is
(a) n
(b) $\mathrm{n}-1$
(c) $\mathrm{n}+1$
(d) 1
6. For which value of $\mathrm{k},(2,1,3)$ and $(1,7, \mathrm{k})$ are orthogonal?
(a) -3
(b) -1
(c) 0
(d) 2
7. Dimension of $P_{2}=\left\{a_{0}+a_{1} x+a_{2} x^{2} / a_{i} \in R, i=0,1,2\right\}$ is
(a) 0
(b) 1
(c) 2
(d) 3
Q. 2 (a) Prove by Wronskian that $1, x, x^{2}$ are Linearly independent.
(b) Is $\{(2,1),(3,0)\}$ a basis for R^{2} ?
(c) Check whether the set of all $(x, y) \in R^{2}$ with binary operations 07 $(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ and $k(x, y)=(k x, y)$ is vector space or not.
Q. 3 (a) Determine whether $T: R^{2} \rightarrow R^{2}$ is a linear transformation.
$T(x, y)=(x+1, y)$
(b) Solve by Cramer's rule.
$x_{1}+2 x_{3}=6$
$-3 x_{1}+4 x_{2}+6 x_{3}=30$
$-x_{1}-2 x_{2}+3 x_{3}=8$
(c) Find a standard basis vector that can be added to the set $\left\{v_{1}, v_{2}\right\}$ to produce a basis for R^{3}.
$v_{1}=(-1,2,3), \quad v_{2}=(1,-2,-2)$
Q. 4 (a) Find values of a, b for which A and B are not invertible matrices.
$A=\left[\begin{array}{cc}a+b-1 & 0 \\ 0 & 3\end{array}\right] \quad B=\left[\begin{array}{cc}5 & 0 \\ 0 & 2 a-3 b-7\end{array}\right]$
(b) Find rank of the matrix by the determinant method.
$A=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ -1 & -2 & -3 & -4 \\ 0 & 1 & 0 & 1\end{array}\right]$
(c) Solve by Gauss-Jordan elimination.
$2 x_{1}+2 x_{2}+2 x_{3}=0$
$-2 x_{1}+5 x_{2}+2 x_{3}=1$
$8 x_{1}+x_{2}+4 x_{3}=-1$
Q. 5 (a) Let $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in R^{2}$.

Verify that $\langle u, v\rangle=3 u_{1} v_{1}+2 u_{2} v_{2}$ is an inner product.
(b) Find the directional derivative of $x y+y z+z x$ in the direction of $3 i-2 j+k$ at $(1,2,3)$.
(c) Use Gram-Schmidt process to transform basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ into an orthonormal basis with Euclidean inner product.
$u_{1}=(1,1,1), u_{2}=(-1,1,0), u_{3}=(1,2,1)$
Q. 6 (a) Verify Caley - Hamilton theorem for $A=\left[\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right]$.
(b) For linear transformation
$T: R^{2} \rightarrow R^{2}, T(x, y)=(2 x-y,-8 x+4 y)$, which of the following are in $\operatorname{Ker}(T)$?
(i) $(5,10)$ (ii) $(3,2)$
(c) Identify the curve.
$9 x^{2}+4 y^{2}-36 x-24 y+36=0$
Q. 7 (a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.
(b) Find the work done in moving a particle in the force field $\bar{F}=3 x^{2} i+(2 x z-y) j+z k$ along the straight line from $(0,0,0)$ to $(2,1,3)$.
(c) Using Green's theorem evaluate $\int_{C}\left(x^{2} y d x+x^{2} d y\right)$ where c is the boundary of the triangle whose vertices are (0,0), (1,0), (1,1).

