Seat No.: Enrolment No. **GUJARAT TECHNOLOGICAL UNIVERSITY** BE - SEMESTER-1st / 2ndEXAMINATION (NEW SYLLABUS) - WINTER 2018

Subject Code: 2110015

Subject Name: Vector Calculus and Linear Algebra Time:10:30 AM TO 1:30 PM **Instructions:** 1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 0.1 **Objective Question (MCQ)** Marks **(a)** 07 For a square matrix A, if $A \cdot A^T = I$, then A is 1. (a) Symmetric (b) Skew-symmetric (c) Orthogonal (d) Singular For inner product defined by $\langle p, q \rangle = \int_{-1}^{1} p \cdot q \, dx$, value of ||x|| is 2. (a) $\sqrt{2/3}$ (b) 2/3(c) 0 (d) 23. The number of vectors in a basis for vector space is known as (a)degree (b) order (c) dimension (d) zeros Which is the standard basis vector of R^3 ? 4. (a)**(1,1,1)** (b) **(1,0,1)** (c) (0,0,0)(d) **(1,0,0)** 5. Which of the following is in reduced row echelon form? 0 2] [1 1 0] [1 0 0] [0 1 0] [1 (a) 0 1 3 (b) 0 1 0 (c) 0 0 0 (d) 1 0 0 lo o ol lo 0 1] lo 0 Lo LO O 0] For homogeneous system of equations AX = 0, if $|A| \neq 0$, then the 6. system has (a)trivial solution (b) non trivial solution (c) infinite no. of solutions (d) no solution 7. Which is not correct for the matrices? $(a)(A^T)^T = A$ (b) $(AB)^T = A^T B^T$ (c) $A^0 = I$ (d) None of these **(b)** 07 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is 1. (a) negative definite (b) positive definite (c) indefinite (d) positive semi definite 0 0] 2. If $A = \begin{bmatrix} 3 & 5 & 0 \\ -7 & 8 & 2 \end{bmatrix}$, then eigen values of A^{-1} are (a) 1,5,2 (b) -1, -5, -2 (c) 0,0,0 (d) 1, $\frac{1}{5}$, $\frac{1}{2}$ Which of the following linear transformation is one to one? 3. (b) T(x,y) = (x + 2y, -x + y)(a)T(x,y) = (8x + 4y, 2x + y)(c) T(x,y) = (4x - 6y, -2x + 3y) (d) None of these Find the value of 'a' if $\overline{F} = (x+3y)i + (y-2z)j + (az+x)k$ is 4. solenoidal. (a)**2** (b)**1** (c)-2(d)05. Rank of the identity matrix I_n is (a) n (b) n-1 (c) n+1 (d) 1 For which value of k, (2,1,3) and (1,7, k) are orthogonal? 6. (a) -3 (b) -1 (c) 0 (d) 2 Dimension of $P_2 = \{a_0 + a_1x + a_2x^2 / a_i \in R, i = 0,1,2\}$ is 7. (a) 0 (b) 1 (c) 2 (d) 3

Date: 03/01/2019

Total Marks: 70

Q.2	(a) (b) (c)	Prove by Wronskian that $1, x, x^2$ are Linearly independent. Is $\{(2,1), (3,0)\}$ a basis for \mathbb{R}^2 ? Check whether the set of all $(x, y) \in \mathbb{R}^2$ with binary operations (x, y) + (x', y') = (x + x', y + y') and $k(x, y) = (kx, y)$ is vector space or not.	03 04 07
Q.3	(a)		03
	(b)	T(x,y) = (x + 1, y) Solve by Cramer's rule. $x_1 + 2x_3 = 6$ $-3x_1 + 4x_2 + 6x_3 = 30$ $-x_1 - 2x_2 + 3x_3 = 8$	04
	(c)		07
Q.4	(a)	Find values of <i>a</i> , <i>b</i> for which <i>A</i> and <i>B</i> are not invertible matrices. $A = \begin{bmatrix} a+b-1 & 0 \\ 0 & 3 \end{bmatrix} B = \begin{bmatrix} 5 & 0 \\ 0 & 2a-3b-7 \end{bmatrix}$	03
	(b)	Find rank of the matrix by the determinant method. $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & -2 & -3 & -4 \\ 0 & 1 & 0 & 1 \end{bmatrix}$	04
	(c)	$\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$ Solve by Gauss-Jordan elimination. $2x_1 + 2x_2 + 2x_3 = 0$ $-2x_1 + 5x_2 + 2x_3 = 1$ $8x_1 + x_2 + 4x_3 = -1$	07
Q.5	(a)		03
	(b)	Verify that $\langle u, v \rangle = 3u_1v_1 + 2u_2v_2$ is an inner product. Find the directional derivative of $xy + yz + zx$ in the direction of $3i - 2j + k$ at (1,2,3).	04
	(c)	Use Gram-Schmidt process to transform basis $\{u_1, u_2, u_3\}$ into an orthonormal basis with Euclidean inner product. $u_1 = (1,1,1), u_2 = (-1,1,0), u_3 = (1,2,1)$	07
Q.6	(a)	Verify Caley – Hamilton theorem for $A = \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$.	03
	(b)	For linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (2x - y, -8x + 4y)$, which of the following are in $Ker(T)$?	04
	(c)	(i)(5,10) (ii) (3,2) Identify the curve. $9x^2 + 4y^2 - 36x - 24y + 36 = 0$	07
Q.7	(a)	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 + z^2 = 9$	03
	(b)	$z = x^2 + y^2 - 3$ at the point (2, -1,2). Find the work done in moving a particle in the force field $\overline{F} = 3x^2i + (2xz - y)j + zk$ along the straight line from (0,0,0) to (2,1,3).	04
	(c)	Using Green's theorem evaluate $\int_c (x^2y dx + x^2 dy)$ where <i>c</i> is the boundary of the triangle whose vertices are (0,0), (1,0), (1,1).	07