2	Subje	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION – SUMMER 2024 ect Code:3130606 Date:16-07-2 oct Name: Costachnical Engineering	2024
Time:10:30 AM TO 01:00 PM Total Mar		ks:70	
1	iisti uc	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. 	MARKS
Q.1	(a)	Define the following terms.1. Void ratio2. Degree of saturation3. Water content	03
	(b)	Derive the relation between $\gamma_b = \frac{(G+se)\gamma_w}{(1+e)}$	04
	(c)	A soil sample has porosity of 45%, with specific gravity 2.7. Calculate (A) void ratio (B) dry density (C) unit weight of soil if soil is fully saturated.	07
Q.2	(a)	In the sieve analysis test 60% soil retains on 4.75 mm sieve. If the value of $D_{10=}$ 0.115, $D_{30}=0.53$, and $D_{60}=1.55$ respectively, classify the soil.	03
	(b) (c)	Ilustrtae the hydrometer test for grain size analysis of fine grain soil. Describe laboratory falling head permeability test.	04 07
	(c)	Describe laboratory standard proctor test.	07
Q.3	(a) (b) (c)	Differentiate between UU and CU test. Describe honeycombed structure of soil. A sample of dry cohesionless soil was tested in a triaxial test at confining pressure of 100 kN/m ² . If the angle of shearing resistance was 36° , determine the deviator stress.	03 04 07
0.3	(a)	State the limitations of Direct shear test	03
·	(b) (c)	Describe flocculated structure of soil. A cylindrical soil sample failed at 140 kN/m^2 in an unconfined compression test. The failure plane makes an angle of 54° with horizontal. Determine the shear parameters.	04 07
Q.4	(a) (b) (c)	Describe friction circle method. Illustrate Isobar diagram. A retaining wall with vertical back and 6.0 m in height supports cohesionless soil up to full heights. It also carries udl of 27 kN/m ² . If the unit weight of soil is 17.5 kN/m ³ , and angle of internal friction is 30°, calculate pressure intensity at base, total horizontal thrust with its location.	03 04 07
Q.4	(a) (b) (c)	Describe Swedish circle method. Illustrate NEWMARK'S influence chart. A 5 m high retaining wall supports cohesive soil. The soil properties are $c = 5$ kN/m^2 , $\gamma = 17$ kN/m^3 , and $\emptyset = 30^\circ$. Determine pressure at top, depth of tension crack, unsupported height, and pressure intensity at base.	03 04 07

03
04
07
03
04
07
