GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-I & II (NEW) EXAMINATION - SUMMER 2024

Subject Code:3110018 Date:10-07-2024 **Subject Name: Physics** Time:02:30 PM TO 05:00 PM **Instructions:**

Total Marks:70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	Define following terms. i. Critical Temperature ii. Persistent Current iii. Isotope effect	03
	(b)	Explain hot point probe method with necessary diagrams.	04
	(c)	Explain in detail how Kronig and Penney model explains the origin of band gap in semiconductors.	07
Q.2	(a)	Compare n-Type and p-Type Semiconductors.	03
-	(b)	Distinguish between Type-I and Type-II Superconductivity.	04
	(c)	Determine the necessary formula for density of hole in Valence Band for Intrinsic Semiconductors.	07
	(\mathbf{a})	OR What are Einstein's coefficients? Give relation between them and discuss	07
	(c)	the result.	07
Q.3	(a)	Define:	03
Q.5	(u)	i. Energy Gap ii. Fermi Function iii. Density of states	00
	(b)	Estimate the position of Fermi Level at 300 K for a material with $E_C = 0.8 \text{ eV}$ and $E_V = 0.5 \text{ eV}$ ($m_e^* = 0.14m_0$ and $m_h^* = 0.28m_0$, m_0 is rest mass of an electron).	04
	(c)	Illustrate Four probe method for thin sheet and bulk sample in detail. OR	07
Q.3	(a)	What are the postulates for free electron theory?	03
-	(b)	In an intrinsic semiconductor, energy gap is 1.3 eV. Evaluate the ratio	04
		between its conductivity at temperature 700 K and 400 K.	
	(c)	Show that Junction capacitance is inversely proportional to square root of	07
	(-)	Reverse biasing Voltage.	
Q.4	(a)	What do you mean by Photo Voltaic Effect? Write its three applications	03
		in the field of engineering.	
	(b)	Using Fermi function, evaluate the temperature at which there is 20 % probability that an electron in solid will have energy 0.3 eV above E_F of 3 eV.	04

	(c)	Explain at least seven properties of Superconductors in detail with necessary diagram and equations.	07
		OR	
Q.4	(a)	Define :	03
		i. Population Inversion	
		ii. Meta stable state	
		iii. Active Medium	
	(b)	Explain how the materials are classified into conductors, semiconductors	04
		and insulators with the help of energy band diagrams.	
	(c)	Briefly outline the mechanism of superconductivity using BCS theory and	07
		explain penetration depth.	
Q.5	(a)	Compare Direct Band Gap semiconductors and Indirect Band Gap semiconductors	03
	(b)	What are Excitons? explain the types of Exciton.	04
	(c)	(i) Estimate the concentration of holes and electrons in n-type silicon at	04
		300 K. If the conductivity is 8 X 10^4 $ /m. also find these value for p-$	
		type Si. $n_i = 2.5 \times 10^{16} \text{ m}^{-3}$, electron and hole mobility is 1600×10^{-4}	
		m^2/V .Sec and 700X10 ⁻⁴ m^2/V .Sec respectively.	
		m / v.see and / 00/x10 m / v.see respectively.	
		(ii) Evaluate the Electron and Hole concentration at room temperature, for	03

OR

Q.5	(a)	List difference between drift and diffusion current	03
	(b)	Explain in detail the Fermi's Golden Rule.	04
	(c)	(i)In a solid consider an energy level lying 0.2 eV above Fermi level.	04
		Estimate the probability of this level not being occupied by an electron at	
		room temperature.	

(ii)A rectangular semiconductor specimen of thickness 1 mm is placed in the magnetic field of flux density 0.5 Wb/m². Current of 1.5 mA is flowing through the specimen in one direction. Evaluate Hall coefficient of the material if generated hall voltage is 7.5 mV.
