moist air.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2023 Subject Code:3161910 Date:04-07-2023 **Subject Name: Applied Thermodynamics** Time:10:30 AM TO 01:00 PM **Total Marks:70** Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed. 5. Use of steam table is allowed. MARKS 0.1 State the assumptions to be made for fuel-air cycle analysis. 03 (a) (b) Define the following (i) Relative Humidity (ii) wet bulb depression (iii) 04 Dew point temperature (iv) saturated air What are the needs of multi-staging? Derive the equation of work done 07 (c) on air for multi-stage reciprocating air compressor. 0.2 Define engine. What are the main objectives of IC engine testing? (a) 03 **(b)** Explain designation system of refrigerants. 04 Explain Vander Waal's Equation of State. Derive an expression for 07 (c) Evaluation of Constant 'a' and 'b'. OR 1 kg of oxygen occupies a volume of $0.25 \text{ m}^3/\text{kg}$ at 330 K is subjected 07 (c) to isothermal expansion process tillit's volume becomes 0.75 m³/kg. Assuming that the gas obey Vanderwall's gas equation, find the final pressure of the gas and the work done during the process. Assume Vanderwall's gas constant as : $a = 138000 \text{ Nm}^4 / (\text{kg}_{\text{mol}})^2$, b = 0.0318 m^3/kg_{mol} 0.3 (a) Explain sensible cooling process. 03 In an absorption system heating cooling and refrigeration takes place at **(b)** 04 temperature of 115 °C 30 °C and -20 °C respectively find theoretical COP of the system. If the generator temperature increased to 200 °C and evaporator temperature decreased to -40 °C, find the % change in COP of system. Explain working of two stage compression with liquid intercooler with 07 (c) neat sketch and p-h diagram. OR Q.3 (a) Explain Global warming potential of refrigerants. 03 (b) What are secondary refrigerants? State advantages of secondary 04 refrigerants. Atmospheric air at 101.325 kPa has 30° C DBT and 15°C DPT. Without 07 (c) using psychrometric chart calculate partial pressure of air and vapour, specific humidity, relative humidity, vapour density and enthalpy of

1

Q.4	(a)	Differentiate Centrifugal and Axial Flow Compressor	03
	(b)	Explain dissociation loss and its effect on maximum temperature and	04
		pressure of the cycle.	
	(c)	Derive an Expression for Velocity of Sound Wave in Compressible	07
		Fluid Flow and also Express in terms of Bulk Modulus.	
		OR	
Q.4	(a)	Define zone of action, zone of silence and mach cone.	03
	(b)	Explain time loss, spark timing loss and heat loss in actual cycle.	04
	(c)	In a diesel cycle, air at the beginning of compression is 1 bar and 50°C.	07
		The air-fuel ratio is 25:1 and compression ratio is 15. Assuming $Cv =$	
		$0.71 + 21 \times 10^{-5}$ T and law of compression is $pv^{1.35} = constant$. Calculate	
		the % stroke at which combustion is completed. Take calorific value of	
		fuel as 44000 kJ/kg and $R = 287$ J/kg-K.	
Q.5	(a)	Explain working of catalytic converter.	03
Q.3	(a) (b)	Write short note on variable compression ratio engine.	03
	(D) (C)	The following observations were recorded from test on a single cylinder	07
	(C)	four stroke oil engine having following parameters : cylinder bore =	07
		150 mm, engine stroke = 250 mm, engine speed = 420 rpm, brake	
		torque = 217 N-m, fuel consumption = 2.95 kg/h, calorific value of fuel	
		= 44000 kJ/kg, cooling water flow rate $= 0.068 kg/s$, cooling water	
		temperature rise = 45 K, specific heat capacity of cooling water = 4.18	
		kJ/kg-K, mean effective pressure = 7.5 bar, calculate (i) mechanical	
		efficiency (ii) brake thermal efficiency (iii) specific fuel consumption	
		(iv) draw heat balance sheet.	
		OR	
Q.5	(a)	What are the major pollutants emitted from diesel engine?	03
×	(b)	State and explain losses in centrifugal compressor.	04
	(c)	For a multistage axial flow compressor, initial state of air is 1 bar, 30°C	07
	<-/		-

(c) For a multistage axial flow compressor, initial state of air is 1 bar, 30°C and final state is 6 bar, 300 °C. Calculate the overall isentropic and polytropic efficiencies. When the actual temperature rise per stage is 16 °C, calculate the number of stages required , assuming polytropic efficiency as the stage efficiency.