S S T	ubje ubje ime:	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (NEW) EXAMINATION – SUMMER 2023 ct Code:3160704ct Code:3160704Date:04-07-2023 Date:04-07-2023ct Name:Theory of Computation 210:30 AM TO 01:00 PMTotal Marks:70	
In	struc	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. 	
			Marks
Q.1	(a)	Let f be a function from the set $A = \{1,2,3,4\}$ to $B = \{p, q,r,s\}$ such that, $f = \{(1,p)(2,p)(3,q)(4,s)\}$. Is f^{-1} a function?	03
	(b)	<i>L</i> is defined recursively as follows: 1. $\epsilon \in L$ 2. $\forall x \in L$, both 0x and 0x1 are in <i>L</i> .	04
		Prove that: For every $n \ge 0$, every x belongs to L obtained by n applications of rule 2 is an element of L	
	(c)	Discuss "Distinguishability" of one string from another and explain how it affects the number of states in an FA. Considering the example of $L = \{a, b\}^* \{aba\}$, how do the distinguishable strings in L relate to the number of states in its FA?	07
02	(9)	Define: Grammar	03
Q.2	(a) (b)	What are similarities and differences between Moore machines and Mealy machines?	04
	(c)	Given two languages L_1 and L_2 , defined as: $L_1 = \{x \mid all \ x \ start \ with \ aba \}$ $L_2 = \{x \mid all \ x \ ends \ in \ bb\}$	
		Write the regular expression for both the languages and construct FAs M_1 and M_2 such that M_1 accepts L_1 and M_2 accepts L_2 . Derive $L_1 \cap L_2$.	07
		OR	
	(c)	Draw the given NFA in Table-1 and convert it to FA and identify the language. q0 is the initial state and q1 is the accepting state.	07
Q.3	(a)	Draw NFA lambda for the given regular expression:	03

(0)* (00 + 11)* (001) (01 + 10)
(b) Explain the Pumping Lemma for Context Free Languages.
(c) Convert the following grammar to CNF.

	66
$S \rightarrow ABA$	
$A \rightarrow aA \mid \epsilon$	
$B \rightarrow bB \mid \epsilon$	

OR

- Q.3 (a) Find the Λ-closure of a set of states for each state of the given NFA lambda in Figure-1. 03
 - (b) What are non-CFLs? Give at-least two examples of non-CFLs.
 - (c) Show Bottom Up Parsing of the string "id + id * id" using the following grammar. $E \rightarrow E + T | T$ $T \rightarrow T * F | F$ 07
 - 1

04

04

07

 $F \rightarrow (E) \mid id$

Q.4	(a)	Define PDA. State whether a PDA can accept a CFL or not.	03			
	(b)) Discuss the closure properties of CFLs.				
	(c)	For the given Turing Machine in Table-2, trace the transition for the strings 1011 and 10101 and identify the language recognized by this TM. TM is defined as TM = $(Q, \Sigma, \Gamma, q_0, \delta)$ where $\{q_0,q_1,q_2,q_3,q_4,q_5,q_6\} \in Q, \Sigma = \{0,1\}, \{0,1,X,Y,B\} \in \Gamma,$ $q_0 \in Q, B \in \Gamma, B \notin \Sigma, \{q_6\}$ is the accepting state.	07			
		OR				
Q.4	(a)	Compare NPDA with DPDA.	03			
	(b)	Show that if there are strings x and y in the language L so that x is a prefix of y	04			
		and $x \neq y$, then no DPDA can accept L by empty stack.	04			
	(c)	Draw a TM for the Language of strings with balanced parenthesis "(" and ")"				
		only.	07			
Q.5	(a)	When can we say that the language is decidable or undecidable?	03			
C	(b)	Draw only the transition table of Turing Machine to accept the language $L =$	04			
		$\{0^n 1^n: where \ n \ge 1\}$				
	(c)	Define: Bounded Minimalization and show that, if P is a primitive recursive $(n + n)$	07			
		1) place predicate, its bounded minimalization mP is a primitive recursive				
		function.				
		OR				
Q.5	(a)	When can the language be called a recursive language or a recursively enumerable	03			
		language?				
	(b)	Show that a Turing Machine to recognize the language $L = L(0^*1)$ can accept	04			
		the string without moving the head in L direction.				

(c) Define: μ -Recursive functions and show how all computable functions are μ - 07 recursive.

State	0	1	X	Y	В
q_0	(q1, X, R)	(q2, Y, R)	(q6, X, R)	(q6, Y, R)	(q6, B, R)
q_1	(q1, 0, R)	(q1, 1, R)	(q3, X, L)	(q3, Y, L)	(q3, B, L)
<i>q</i> ₂	(q2, 0, R)	(q2, 1, R)	(q4, X, L)	(q4, Y, L)	(q4, B, L)
<i>q</i> ₃	(q5, X, L)	_	(q6, X, R)	(q6, Y, R)	_
q_4		(q5, Y, L)	(q6, X, R)	(q6, Y, R)	
q_5	(q5, 0, L)	(q5, 1, <i>L</i>)	(q0, X, R)	(q0, Y, R)	

1 1