\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2023

Subject Code:3160704
Date:04-07-2023

Subject Name:Theory of Computation

Time:10:30 AM TO 01:00 PM
Total Marks:70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q. 1	(a) (b)	Let f be a function from the set $A=\{1,2,3,4\}$ to $B=\{p, q, r, s\}$ such that, $f=$ $\{(1, p)(2, p)(3, q)(4, s)\}$. Is f^{-1} a function? L is defined recursively as follows:	03
		2. $\forall x \in L$, both $0 x$ and $0 x 1$ are in L.	04
	(c)	Prove that: For every $n>=0$, every x belongs to L obtained by n applications of rule 2 is an element of L . Discuss "Distinguishability" of one string from another and explain how it affects the number of states in an FA. Considering the example of $L=$ $\{a, b\}^{*}\{a b a\}$, how do the distinguishable strings in L relate to the number of states in its FA?	07
Q. 2	(a)	Define: Grammar.	03
		What are similarities and differences between Moore machines and Mealy machines?	04
	(c)	Given two languages L_{1} and L_{2}, defined as: $L_{1}=\{x \mid \text { all } x \text { start with aba }\}$	
		$L_{2}=\{x \mid \text { all } x \text { ends in } b b\}$ Write the regular expression for both the languages and construct FAs M_{1} and M_{2} such that M_{1} accepts L_{1} and M_{2} accepts L_{2}. Derive $L_{1} \cap L_{2}$.	07

OR

(c) Draw the given NFA in Table-1 and convert it to FA and identify the language. q 0 is the initial state and q 1 is the accepting state.
Q. 3 (a) Draw NFA lambda for the given regular expression:
$(0) *(00+11) *(001)(01+10)$
(b) Explain the Pumping Lemma for Context Free Languages.
(c) Convert the following grammar to CNF.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ABA} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \mid \epsilon \\
& \mathrm{B} \rightarrow \mathrm{bB} \mid \epsilon
\end{aligned}
$$

OR

Q. 3 (a) Find the Λ-closure of a set of states for each state of the given NFA lambda in
(b) What are non-CFLs? Give at-least two examples of non-CFLs.
(c) Show Bottom Up Parsing of the string "id + id * id" using the following grammar.

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T} * \mathrm{~F} \mid \mathrm{F}
\end{aligned}
$$07

$$
\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{id}
$$

Q. 4 (a) Define PDA. State whether a PDA can accept a CFL or not. 03(b) Discuss the closure properties of CFLs.04
(c) For the given Turing Machine in Table-2, trace the transition for the strings 1011 and 10101 and identify the language recognized by this TM. TM is defined as TM $=\left(\mathrm{Q}, \Sigma, \Gamma, \mathrm{q}_{0}, \delta\right)$ where $\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}, \mathrm{q}_{5}, \mathrm{q}_{6}\right\} \in \mathrm{Q}, \Sigma=\{0,1\},\{0,1, \mathrm{X}, \mathrm{Y}, \mathrm{B}\} \in \Gamma$, $\mathrm{q}_{0} \in \mathrm{Q}, \mathrm{B} \in \Gamma, \mathrm{B} \notin \Sigma,\left\{\mathrm{q}_{6}\right\}$ is the accepting state.
Q. 4 (a) Compare NPDA with DPDA. 03
Q. 4 (a) Compare NPDA whe De
(b) Show that if there are strings x and y in the language L so that x is a prefix of y
(c) Draw a TM for the Language of strings with balanced parenthesis "(" and ")"
only.
Q. 4 (a) Compare NPDA with DPDA.
(b) Show that if there are strings x and y in the language L so that x is a prefix of y
and $x \neq y$, then no DPDA can accept L by empty stack.
(c) Draw a TM for the Language of strings with balanced parenthesis "(" and ")"
only.
Q. 4 (a) Compare NPDA with DPDA.
(b) Show that if there are strings x and y in the language L so that x is a prefix of y
and $x \neq y$, then no DPDA can accept L by empty stack.
(c) Draw a TM for the Language of strings with balanced parenthesis "(" and ")"
only.
Q. 4 (a) Compare NPDA with DPDA.
(b) Show that if there are strings x and y in the language L so that x is a prefix of y
and $x \neq y$, then no DPDA can accept L by empty stack.
(c) Draw a TM for the Language of strings with balanced parenthesis "(" and ")"
only.

OR

Q. 5 (a) When can we say that the language is decidable or undecidable?
(b) Draw only the transition table of Turing Machine to accept the language $L=$ $\left\{0^{n} 1^{n}\right.$: where $\left.n \geq 1\right\}$
(c) Define: Bounded Minimalization and show that, if P is a primitive recursive $(n+$ 1) place predicate, its bounded minimalization $m P$ is a primitive recursive function.

OR

Q. 5 (a) When can the language be called a recursive language or a recursively enumerable language?
(b) Show that a Turing Machine to recognize the language $L=L\left(0^{*} 1\right)$ can accept the string without moving the head in L direction.
(c) Define: μ-Recursive functions and show how all computable functions are μ recursive.

Table-1

	$\delta(q, 0)$	$\delta(q, 1)$
q_{0}	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{1}\right\}$
q_{1}	$\{\varnothing\}$	$\left\{q_{0}, q_{1}\right\}$

Figure-1

