Seat No.: Enro	lment No
----------------	----------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2023

S	ubje	ect Code:3141005 Date:11-07-2023	
S	ubje	ect Name:Signal & Systems	
	•	:10:30 AM TO 01:00 PM Total Marks:70	
		etions:	
		1. Attempt all questions.	
		2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks.	
		4. Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a)	State Dirichlet condition for Fourier Series Representation.	03
	(b)	Prove the duality property of Fourier Transform.	04
	(c)	Explain reconstruction of a signal from its samples using interpolation.	07
Q.2	(a)	List out properties of convolution.	03
	(b)	Obtain the relationship between Laplace transform and Fourier Transform.	04
	(c)	Obtain Z-Transform of $x(n) = n^2 u(n)$ and $x(n) = (-2)^n u(-n-1)$ OR	07
	(c)	Classify signals. Give examples of each.	07
Q.3	(a)	Find the even and odd components of $x(t) = cos(t)sin(t)$	03
•	(b)	Write a short note on zero order hold with its application.	04
	(c)	Compute DFT of the sequence, $x[n] = \{1,2,3,4\}$ using its definition. OR	07
Q.3	(a)	Find the Fourier Transform of $x(t) = e^{-3t}u(t)$.	03
V. 0	(b)	Define R.O.C. of Z-Transform. Write its properties.	04
	(c)	A system is described by difference equation $y(n) = 0.5y(n-1) + x(n)$. Input given to system is $(1/3)^n u(n)$ and initial condition is $y(-1) = 1$. Determine the zero state response.	07
Q.4	(a)	State & prove a condition for a discrete time LTI system to be stable.	03
-	(b)	Prove Commutative property of convolution.	04
	(c)	Determine the Inverse Z-Transform of	07
		$X(Z) = \frac{\frac{1}{4}Z^{-1}}{\left(1 - \frac{1}{2}Z^{-1}\right)\left(1 - \frac{1}{4}Z^{-1}\right)} ROC: Z > \frac{1}{2}$ OR	
Q.4	(a)	Prove that a DT LTI system is causal if and only if $h(n) = 0$ for $n < 0$.	03
-	(b)	Find the Fourier Transform of the periodic signal $x(t) = cos(2\pi f t)u(t)$	04
	(c)	Determine Inverse Z- Transform of	07
		$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$, $ROC: z > 1$	
Q.5	(a)	Obtain DFT of unit impulse $\delta(n)$.	03
	(b)	State and prove differentiation property of Z-Transform.	04
	(c)	Explain the properties of continuous time and discrete time systems OR	07
Q.5	(a)	Compare Energy and Power signal.	03
	(b)	State and prove time scaling property of Fourier Transform.	04

(c) Obtain x(n) using long division method for **07** $X(Z) = \frac{z}{z-1}$ for both possible ROCs.
