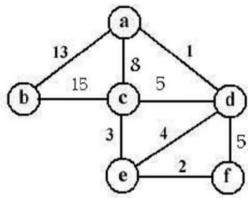
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V(NEW) EXAMINATION - SUMMER 2022

Subject Code:3150703 Date:07/06/2022


Subject Name: Analysis and Design of Algorithms

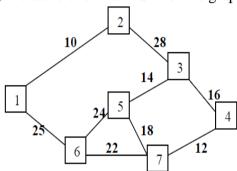
Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a) (b)	Define Algorithm, Time Complexity and Space Complexity Explain: Worst Case, Best Case and Average Case Complexity	03 04
		with suitable example.	
	(c)	Sort the following list using quick sort algorithm:< 5, 3, 8, 1, 4, 6, 2, 7 > Also write Worst and Best case and Average case of quick sort algorithm.	07
•	(a)	Write an algorithm of Selection Sort Method.	03
	(b)	Demonstrate Binary Search method to search Key = 14, form the array A=<2,4,7,8,10,13,14,60>	04
	(c)	Write the Master theorem. Solve following recurrence using it. (i) $T(n)=T(n/2)+1$	07
		(ii) $T(n)=2T(n/2) + n \log n$	
	(c)	OR Solve following recurrence relation using iterative method $T(n) = T(n-1) + 1$ with $T(0) = 0$ as initial condition. Also find big oh notation	07
Q.3	(a)	What is Principle of Optimality? Explain its use in Dynamic Programming Method	03
	(b)	Find out LCS of $A=\{K,A,N,D,L,A,P\}$ and $B=\{A,N,D,L\}$	04
	(c)	Discuss Assembly Line Scheduling problem using dynamic programming with example.	07
0.3	(.)	OR	02
Q.3	(a) (b)	Give the characteristics of Greedy Algorithms Give difference between greedy approach and dynamic	03 04
	(c)	programming. Consider Knapsack capacity W=15, $w = (4, 5, 6, 3)$ and $v = (10, 15, 12, 8)$ find the maximum profit using greedy method.	07
Q.4	(a)	Explain: Articulation Point, Graph, Tree	03
	(b)	Find Minimum Spanning Tree for the given graph using Prim's Algorithm.	04

(c) Explain Breath First Traversal Method for Graph with algorithm with example. **07**


OR

Q.4 (a) Explain Huffman code with Example.

03

04

(b) Write the Kruskal's Algorithm to find out Minimum Spanning Tree. Apply the same and find MST for the graph given below

(c) Explain fractional knapsack problem with example.

07

- Q.5 (a) What is string-matching problem? Define valid shift and invalid shift
 - (b) Define P, NP, NP-Hard and NP-Complete Problem 04
 - (c) Explain Backtracking Method. What is N-Queens Problem? Give solution of 4- Queens Problem using Backtracking Method.

OR

- Q.5 (a) Explain "P = NP?" problem.
 - (b) Explain Minimax principal. 04
 - (c) What is Finite Automata? Explain use of finite automata for string matching with suitable example.