## **GUJARAT TECHNOLOGICAL UNIVERSITY** BE - SEMESTER-IV (NEW) EXAMINATION – SUMMER 2022

Subject Code:3140708

Subject Name:Discrete Mathematics Time:10:30 AM TO 01:00 PM

Total Marks: 70

Date:02-07-2022

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks 03

Q.1 (a) Determine whether each of these statements is true or false.

 $1)0 \in \emptyset$  $2)\emptyset \subset \{0\}$  $3)\{0\} \in \{0\}$  $4)\emptyset \in \{\emptyset\}$  $5)\{\emptyset\} \in \{\{\emptyset\}\}$  $6)\{\{\emptyset\}\} \subset \{\emptyset,\{\emptyset\}\}$ 

- (b) Determine whether f is a function from the set of all bit strings to the set 04 of integers if
  - 1) f(s) is the position of a 0 bit in S.
  - 2) f(s) is the number of a 1 bits in S.

Find the range of each of the following functions that assigns:

- 3) to a bit string the number of one bits in the string
- 4) to each bit string twice the number of zeros in that string.
- (c) 1) Find the bitwise OR, and bitwise XOR of the bit string 1111 0000, 07 1010 1010
  - Show that the function f: R → R<sup>+</sup> ∪ {0} defined by f(x) = |x| is not invertible. Modify the domain or codomain of f so that it becomes invertible.
  - 3) Let S be subset of a universal set U. The characteristic function f<sub>S</sub>
    : U→ {0,1}, f<sub>S</sub>(x) = 1, if x ∈ S and 0 is x ∉ S.
    Let A and B be sets. Then show that f<sub>AOB</sub>(x) = f<sub>A</sub>(x). f<sub>B</sub>(x)
- Q.2 (a) Let P(x) be the statement " $x = x^2$ ". If the domain consists of the integers, 03 what are the truth values of the following?

1) 
$$\exists x P(x) = 2$$
,  $\forall x \neg P(x) = 3$ ,  $\exists x \neg P(x)$ 

- (b) Identify the error or errors in this argument that supposedly shows that if  $\exists x P(x) \land \exists x Q(x)$  is true then  $\exists x (P(x) \land Q(x))$  is true. 04
  - 1.  $\exists x P(x) \land \exists x Q(x)$  Premise
  - 2.  $\exists x P(x)$ Simplification from (1)3. P(c)Existential instantiation from (2) $\forall z = Q(z)$  $\exists x P(x) = (1)$
  - 4.  $\exists x Q(x)$  Simplification from (1)
  - 5. Q(c) Existential instantiation from (2)
  - 6.  $P(c) \land Q(c)$  Conjunction from (3) and (5)
  - 7.  $\exists x (P(x) \land Q(x))$  Existential generalization
- (c) 1) Use a truth table to verify the De Morgan's law  $\neg(p \lor q) \equiv \neg p \land \neg q$  07
  - 2) Show that  $(p \to q) \land (q \to r) \to (p \to r)$  is a tautology.

- (c) 1) Suppose that the domain of Q(x, y, z) consists of triples x, y, z, where x = 0, 1, or 2, y = 0 or 1, and z = 0 or 1. Write out following propositions using disjunctions and conjunctions.
   i) ∃z¬O(0,0,z) ii). ∀vO(0, y, 0)
  - 2)
- i) Show that  $\exists x P(x) \land \exists x Q(x)$  and  $\exists x(P(x) \land Q(x))$  are not logically equivalent.
- ii) Show that  $\exists x (P(x) \lor Q(x))$  and  $\exists x P(x) \lor \exists x Q(x)$  are logically equivalent.
- Q.3 (a) For the relation {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)} on the set {1,2,3,4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive...(Justify your answer if the property is not satisfied)
  - (b) For the following relations on the set of real numbers,  $R_1 = \{(a, b) \in R^2 | a \ge b\}, \quad R_2 = \{(a, b) \in R^2 | a \le b\}$   $R_3 = \{(a, b) \in R^2 | a \ne b\}$  find 1)  $R_1 \oplus R_3$  2)  $R_2 o R_3$
  - (c) 1) Draw the Hasse diagram for the poset ({2, 4, 6, 9, 12, 18, 27, 36, 48, 07 60, 72}, |). Hence find *glb*({60,72}) and all maximal elements.
    - 2) Determine whether the relation with the directed graph shown is an equivalence relation.



OR

**Q.3** (a) Suppose that the relations  $R_1$  and  $R_2$  on a set A are represented by the 03 matrices

 $M_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ What are the matrices representing  $R_1 \cup R_2$  and  $R_1 \cap R_2$ ?

- (b) Use Warshall's algorithm to find the transitive closures of the relation  $R = \{(1,4), (2,1), (2,3), (3,1), (3,4), (4,3)\}$  on  $\{1, 2, 3, 4\}$
- (c) 1) Draw the Hasse diagram for the poset({2, 4, 5, 10, 12, 20, 25}, |). 07
   Hence, find the are maximal and minimal elements.
  - 2) Which of these collections of subsets are partitions of
    - $\{1, 2, 3, 4, 5, 6\}$ ? Justify your answer if it is not a partition.
    - i)  $\{1, 2\}, \{2, 3, 4\}, \{4, 5, 6\}$
    - ii) {1, 4, 5}, {2, 6}

Q.4 (a) Explain Path and Circuit of a graph.

2

07

04





Q.4 (a) 1) Define: i) Isolated vertex ii) Null graph 2) Identify Isolated vertex/vertices from the following graph







(c) 1) Define: M-ary Tree and Binary Tree.2) Represent the following directed tree as Binary tree



## Q.5 (a) 1) Define: SemiGroups.

03

2) Let  $S = \{a, b, c, d\}$ . The following multiplication table, define operations  $\cdot$  on S. Is  $\langle S, \cdot \rangle$  semigroup? Justify

| • | а | b | с | d |
|---|---|---|---|---|
| а | а | b | с | d |
| b | b | а | а | b |
| с | с | b | а | а |
| d | d | а | а | а |

- (b) Let  $H = \{1, -1\}$  and  $G = \{1, -1, i, -i\}$ .  $(H, \times)$  is a sub-group  $(G, \times)$ . 04 Then find all left cosets and right cosets of H in G.
- (c) 1) Define:Ring. 07 2) Write elements of the ring  $\langle z_{10}, +_{10}, \times_{10} \rangle$ . And find  $-3, -8, 3^{-1}, 4^{-1}$ OR
- Q.5 (a) Consider the set Q of a rational numbers. Let \* be the operation on Q 03 defined by a\*b = a + b ab. Find 1) 3\*4 2) the identity element for \*.
  - (b) Write the equivalence classes for congruence modulo 4 i.e.,  $z_4$  04 Let the subset H={[0],[2]} is a subgroup of  $G = \langle z_4, +_4 \rangle$ . Then determine all left cosets of H in G.
  - (c) We are given the ring  $\langle \{a, b, c, d\}, +, \cdot \rangle$  the operations + and  $\cdot$  on *R* are as shown in the following table. 07

| _ | + | а | b | С | d | • | а | b | с | d |   |
|---|---|---|---|---|---|---|---|---|---|---|---|
|   | a | а | b | с | d | a | а | а | а | а | _ |
|   | b | b | с | d | а | b | а | с | а | с |   |
|   | с | с | d | а | b | с | а | а | а | а |   |
|   | d | d | a | b | c | d | а | c | а | а |   |
|   |   |   | - |   |   |   |   |   |   |   |   |

- 1) Does it have an identity?
- 2) What is the zero of this ring?
- 3) Find the additive inverse of each of its elements

\*\*\*\*\*\*