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Seat No.: ________ Enrolment No.___________ 

 

GUJARAT TECHNOLOGICAL UNIVERSITY  
                      BE - SEMESTER–IV (NEW) EXAMINATION – SUMMER 2022 

Subject Code:3140708                                                                         Date:02-07-2022   
Subject Name:Discrete Mathematics   
Time:10:30 AM TO 01:00 PM                                                         Total Marks: 70  
Instructions:  

1. Attempt all questions.        
2. Make suitable assumptions wherever necessary.   
3. Figures to the right indicate full marks. 

4. Simple and non-programmable scientific calculators are allowed.  

 

   Marks
 

Q.1 (a) Determine whether each of these statements is true or false. 

1)0 ∈ ∅                  2)∅ ⊂ {0}                                 3){0} ∈ {0}  

 4) ∅ ∈ {∅}            5){∅} ∈ {{∅}}                             6) {{∅}} ⊂ {∅, {∅}} 
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 (b) Determine whether f is a function from the set of all bit strings to the set 

of integers if  

1) 𝑓(𝑠) is the position of a 0 bit in S. 

2) 𝑓(𝑠) is the number of a 1 bits in S. 

Find the range of each of the following functions that assigns: 

3) to a bit string the number of one bits in the string 

4) to each bit string twice the number of zeros in that string. 
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 (c) 1)   Find the bitwise OR, and bitwise XOR of the  bit string 1111 0000, 

1010 1010 

2) Show that the function 𝑓: 𝑅 → 𝑅+ ∪ {0}  defined by 𝑓(𝑥) = |𝑥|  is 

not invertible. Modify the domain or codomain of 𝑓 so that it 

becomes invertible. 

3) Let 𝑆 be subset of a universal set ∪. The characteristic function 𝑓𝑆 

: ∪→ {0,1} , 𝑓𝑆(𝑥) = 1, 𝑖𝑓 𝑥 ∈ 𝑆 𝑎𝑛𝑑 0 𝑖𝑠 𝑥 ∉ 𝑆.  
Let A and B be sets. Then show that 𝑓𝐴∩𝐵(𝑥) = 𝑓𝐴(𝑥). 𝑓𝐵(𝑥) 
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Q.2 (a) Let P(x) be the statement “x = x2 “.  If the domain consists of the integers, 

what are the truth values of the following? 

1)     ∃𝑥 𝑃(𝑥)    2)   ∀𝑥 ¬𝑃(𝑥)        3) ∃𝑥 ¬𝑃(𝑥) 
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 (b) Identify the error or errors in this argument that supposedly shows that if 

∃x P(x) ∧ ∃x Q(x)  is true then ∃x (P(x) ∧ Q(x))    is true. 

1. ∃x P(x) ∧ ∃x Q(x)      Premise 

2. ∃x P(x)                        Simplification from (1) 

3. P(c)                               Existential instantiation from (2) 

4. ∃x Q(x)                        Simplification from (1) 

5. Q(c)                              Existential instantiation from (2) 

6. 𝑃(c) ∧ 𝑄(𝑐)                 Conjunction from (3) and (5) 

7. ∃𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥))       Existential generalization 
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 (c) 1) Use a truth table to verify the De Morgan’s law 

 ¬(𝑝 ∨ 𝑞) ≡ ¬𝑝 ∧ ¬𝑞 

2) Show that  (𝑝 → 𝑞) ∧ (𝑞 → 𝑟) → (𝑝 → 𝑟) is a tautology.  
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  OR  
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 (c) 1) Suppose that the domain of Q(x, y, z) consists of triples x, y, z, 

where x = 0, 1, or 2, y = 0 or 1, and z = 0 or 1. Write out following 

propositions using disjunctions and conjunctions.  

i)    ∃𝑧¬𝑄(0,0, 𝑧)    ii).    ∀𝑦𝑄(0, 𝑦, 0) 

2)   

i) Show that ∃𝑥 𝑃(𝑥) ∧ ∃𝑥 𝑄(𝑥)   and ∃𝑥(𝑃(𝑥) ∧ 𝑄(𝑥)) are 

not logically equivalent. 

ii) Show that  ∃𝑥(𝑃(𝑥) ∨ 𝑄(𝑥))  and ∃𝑥 𝑃(𝑥) ∨ ∃𝑥 𝑄(𝑥) are 

logically equivalent. 

 

07 

    

Q.3 (a) For the relation  {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)} on the set 

{1,2,3,4}, decide whether it is reflexive, whether it is symmetric, whether 

it is antisymmetric, and whether it is transitive..(Justify your answer if the 

property is not satisfied) 
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 (b) For the following relations on the set of real numbers, 

𝑅1 = {(𝑎, 𝑏) ∈ 𝑅2|𝑎 ≥ 𝑏},          𝑅2 = {(𝑎, 𝑏) ∈ 𝑅2|𝑎 ≤ 𝑏} 

𝑅3 = {(𝑎, 𝑏) ∈ 𝑅2|𝑎 ≠ 𝑏}  find  

  1)  𝑅1⨁𝑅3             2) 𝑅2𝑜 𝑅3 
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 (c) 1) Draw the Hasse diagram for the poset ({2, 4, 6, 9, 12, 18, 27, 36, 48, 

60, 72}, |). Hence find 𝑔𝑙𝑏({60,72}) and all maximal elements. 

2) Determine whether the relation with the directed graph shown is 

an equivalence relation. 
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  OR  

Q.3 (a) Suppose that the relations 𝑅1 and   𝑅2 on a set A are represented by the 

matrices 

M𝑅1
= [

1 0 1
1 0 0
0 1 0

]   and  M𝑅2
= [

1 0 1
0 1 1
1 0 0

]  

What are the matrices representing 𝑅1 ∪ 𝑅2   and 𝑅1 ∩ 𝑅2 ? 
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 (b) Use Warshall’s algorithm to find the transitive closures of the relation 

𝑅 = {(1,4), (2, 1), (2,3), (3,1), (3,4), (4,3)} on {1, 2, 3, 4} 
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 (c) 1) Draw the Hasse diagram for the poset({2, 4, 5, 10, 12, 20, 25}, |). 

Hence,  find the are maximal and  minimal elements. 

2) Which of these collections of subsets are partitions of 

 {1, 2, 3, 4, 5, 6}?   Justify your answer if it is not a partition. 

i) {1, 2}, {2, 3, 4}, {4, 5, 6}  

ii) {1, 4, 5}, {2, 6}  

07 

    

Q.4 (a) Explain Path and Circuit of a graph. 03 
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 (b) 1) Define Isomorphic Graphs 
2) Verify the following graphs are Isomorphic or not (Justify).  

 
 

Graph -1 Graph-2 
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 (c) 1) Define Subtree and Degree of a Node  

2) Determine degree of the each node for the following tree. 
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  OR  

Q.4 (a) 1) Define:            i) Isolated vertex  ii) Null graph 

2) Identify Isolated vertex/vertices from the following graph 
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 (b) 1) Define incidence Matrix of a Graph 

2) Find incidence matrix for the following graph 
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 (c) 1)  Define:  M-ary Tree   and  Binary Tree.   

2)  Represent  the  following directed tree as  Binary tree 

 

07 



 4 

 
 

    

Q.5 (a) 1)    Define:   SemiGroups.  

2)   Let S = {a, b, c, d}. The following multiplication table, define 

operations  ∙ on S.  Is 〈S, ∙〉semigroup? Justify 
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 (b) Let 𝐻 =  {1, – 1} and  𝐺 =  {1, – 1, 𝑖, – 𝑖} . (𝐻,×) is a sub-group (𝐺,×). 

Then find all left cosets and right cosets of 𝐻 in 𝐺. 
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 (c) 1) Define:Ring.  

2)  Write elements of the ring 〈𝑧10, +10, ×10〉. And find −3, −8 , 3−1, 4−1 
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  OR  

Q.5 (a) Consider the set Q of a rational numbers.  Let ∗  be the operation on Q 

defined by a∗ 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏. Find 

1) 3 ∗ 4    2)  the identity element for ∗. 
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 (b) Write the equivalence classes for congruence modulo 4 i.e.. z4   

Let the subset H={[0],[2]} is a subgroup of 𝐺 = 〈𝑧4 , +4 〉. Then determine 

all left cosets of H in G.  
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 (c) We are given the ring 〈{𝑎, 𝑏, 𝑐, 𝑑}, +,∙〉 the operations + and ∙ on 𝑅 are as 

shown in the following table.  

 

+ a b c d 

a a b c d 

b b c d a 

c c d a b 

d d a b c 
 

∙ a b c d 

a a a a a 

b a c a c 

c a a a a 

d a c a a 
 

1) Does it have an identity?  

2) What is the zero of this ring?  

3) Find the additive inverse of each of its elements  
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