CULLADAT TECHNOLOCICAL UNIVEDSITY

		GUJAKAI IECHINOLOGICAL UNIVERSIIY RF - SEMESTER_V (NEW) EXAMINATION - SUMMER 2021									
Subject Code:3150703 Date:05/1 Subject Name: Analysis & Design of Algorithms											
											Time:10:30 AM TO 01:00 PM Total M
Instru	ctior	18:									
	1.	Attempt all questions.									
	2.	Make suitable assumptions wherever necessary.									
	 Figures to the right multicate run marks. Simple and non-programmable scientific calculators are allowed. 										
	••	Simple and non programmable scientific calculators are anowed.									
			MARKS								
Q.1	(a)	Explain Asymptotic notations.	03								
	(b)	What is Principle of Optimality? Explain its use in Dynamic Programming Method.									
	(c)	Explain why algorithm analysis is important. Also explain Worst Case, Best Case & Average Case Complexity of algorithm.									
Q.2	(a)	Explain Master method for solving Recurrence.									
	(b)	Explain Counting Sort algorithm with example.									
	(c)	Explain Quick Sort algorithm with suitable example. Also give its 07 complexity analysis.									
	(a)	OR									
	(c) Explain Binary search algorithm with divide and conquer strategy and show that the solution to the binary search recurrence $T(n) = T(n/2) - \Theta(1)$ is $T(n) = \Theta(lgn)$.										
0.3	(8)	Explain general characteristics of Greedy algorithm									
X	(b)	Write Kruskal's algorithm to find Minimum Spanning Tree.									
	(c)	Write Huffman code algorithm and Generate Huffman code for following:	07								
		Symbol a b c d e									
		Frequency 35 25 20 12 8									
01	(\cdot)		03								
Q.3	(a) (b)	Write algorithm to find Minimum Spanning Tree (MST) using Prim's	03								
	(U)	write algorithm to find Minimum Spanning Tree (MST) using Prim's 04 method									
	(c)	Using Greedy method find an optimal solution for fractional knapsack	07								
	. ,	problem given below:									
		n=7, W=15.									
		Weight (w) 2 3 5 7 1 4 1									
		Profit (p) 10 5 15 7 6 18 3									
0.4		Explain Optimal Substructure and Overlanding sub-machines with	02								
Q.4	(a)) Explain Optimal Substructure and Overlapping sub problems with suitable example									
	(h)	Explain All Pair Shortest Path Algorithm.	04								
	(c)	Given two sequences of characters, M= <a,b,c,d,b,a,c,d,f>,</a,b,c,d,b,a,c,d,f>	,C,D,B,A,C,D,F>, 07								
N= <c,b,a,f> Obtain the Longest Common Subsequence. Write equations and necessary steps.</c,b,a,f>											

OR

						, c					
Q.4	(a)	Explain: Articulation Point, Graph, Minimum Spanning Tree.						03			
-	(b)	Explain Depth First Search algorithm.									
	(c)	Solve the following Knapsack Problem using Dynamic Method. Write 0									
		the equation and steps for solving above problem. $n = 5$, $W = 100$									
		Object	1	2	3	4	5				
		Weight (w)	10	20	30	40	50				
		Value (v)	20	30	66	40	60				
Q.5	(a)	Explain Hamiltonian problem. 0							03		
-	(b)	Explain Knuth-Morris-Pratt string matching algorithm with example.									
	(c)	of backtracking for Knapsack	07								
	problem given below and explain it briefly.										
		apsack= W= 8 units. Objects									
		5, 6, 10) respectively									
		-				0)R				
Q.5	(a)	Explain Branch and Bound technique briefly.									
	(b)	Define P, NP, NP-Hard and NP-Complete Problem									
	(c)	Explain Rabin-Karp Algorithm for string matching with example and									
	show all necessary steps.										
