\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2021

Subject Code:3131102
Date:11/09/2021
Subject Name:Digital System Design
Time:10:30 AM TO 01:00 PM
Total Marks:70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
MARKSQ. 1 (a) Convert as below3
(i) $(10101010)_{2}=()_{8}=()_{16}$
(ii) $\quad(673.10)_{8}=()_{2}$
(iii) $(\mathrm{ACE})_{16}=()_{10}$
(b) Show that NAND \& NOR are universal gates4
(c) Minimize the following function in SOP minimal form using K-Maps: 7$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{m}(1,2,6,7,8,13,14,15)+\mathrm{d}(3,5,12)$
Q. 2 (a) Explain SOP \& POS form. 3
(b) Implement the 8×1 MUX using two 4×1 MUX. 4
(c) Design a 4 bit binary to gray code converter and implement using EX-OR gates 7
only.
OR
(c) Design a combination circuit to display 0 to 9 on seven segment. 7
Q. 3 (a) State and prove De Morgan's theorem 3
(b) Implement Full Adder using 3×8 decoder. 4
(c) Explain about JK \& RS Flip Flop circuit using its symbol, block diagram, truth 7 table and characteristics equation.
OR
Q. 3 (a) Distinguish between combinational and sequential logic circuits. 3
(b) Implement the following Boolean function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(2,3,5,6,11,14$, 4
15) with a multiplexer.
(c) Explain Bidirectional Shift Register with parallel load. 7
Q. 4 (a) Derive excitation tables for R-S, J-K and T flip-flops. 3
(b) Implement T flip flop using D flip flop. 4
(c) What is a PLA circuit? Explain in details about it. 7
Q. 4 (a) What is sample \& Hold? 3
(b) Compare TTL, ECL and CMOS Logic. 4
(c) Explain Master Slave JK flip-flop with truth table and circuit diagram 7
Q. 5 (a) Define Noise margin, Propagation delay, fan-in and fanout 3
(b) Design 3-bit synchronous up counter using T flip flop 4
(c) Explain about a synchronous counter using 3 bits. 7
OR
Q. 5 (a) Explain any one D/A converter. 3
(b) Draw and explain Ring counter 4
(c) Describe the operation of 4-bit bidirectional shift register with logic diagram 7
