	GUJARAT TECHNOLOGICAL UNIVERSITY	
	BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2021	
Subject	Code:3131102 Date:11/09/2021	
Subject	Name:Digital System Design	
Time:10	:30 AM TO 01:00 PM Total Marks:70	
Instructior		
1. 2	Attempt all questions. Make suitable assumptions wherever necessary	
2 . 3.	Figures to the right indicate full marks.	
4.	Simple and non-programmable scientific calculators are allowed.	
		MARKS
01 (a)	Convert as below	3
Q11 (u)	(i) $(10101010)_2 = ()_8 = ()_{16}$	U
	(i) $(673 \ 10) = (2)$	
	(iii) $(ACE)_{16} = ()_{10}$	
(h)	Show that NAND & NOR are universal gates	4
(c)	Minimize the following function in SOP minimal form using K-Maps:	7
(0)	F(A, B, C, D) = m(1, 2, 6, 7, 8, 13, 14, 15) + d(3, 5, 12)	
0.2(a)	Explain SOP & POS form.	3
(b)	Implement the 8×1 MUX using two 4×1 MUX.	4
(c)	Design a 4 bit binary to gray code converter and implement using EX-OR gates	7
	only.	
	OR	
(c)	Design a combination circuit to display 0 to 9 on seven segment.	7
Q.3 (a)	State and prove De Morgan's theorem	3
(b)	Implement Full Adder using 3×8 decoder.	4
(c)	Explain about JK & RS Flip Flop circuit using its symbol, block diagram, truth	7
	table and characteristics equation.	
	OR	
Q.3 (a)	Distinguish between combinational and sequential logic circuits.	3
(b)	Implement the following Boolean function $F(w, x, y, z) = \Sigma (2, 3, 5, 6, 11, 14, 14)$	4
	15) with a multiplexer.	
(c)	Explain Bidirectional Shift Register with parallel load.	7
Q.4 (a)	Derive excitation tables for R-S, J-K and T flip-flops.	3
(b)	Implement T flip flop using D flip flop.	4
(c)	What is a PLA circuit? Explain in details about it.	7

Q.4 (a)	What is sample & Hold?	3
(b)	Compare TTL, ECL and CMOS Logic.	4
(c)	Explain Master Slave JK flip-flop with truth table and circuit diagram	7
Q.5 (a)	Define Noise margin, Propagation delay, fan-in and fanout	3
(b)	Design 3-bit synchronous up counter using T flip flop	4
(c)	Explain about a synchronous counter using 3 bits.	7
	OR	
Q.5 (a)	Explain any one D/A converter.	3
(b)	Draw and explain Ring counter	4
(c)	Describe the operation of 4-bit bidirectional shift register with logic diagram	7
