GUJARAT TECHNOLOGICAL UNIVERSITY **BE - SEMESTER- III EXAMINATION - SUMMER 2020** Subject Code: 3130608 Date:04/11/2020 **Subject Name: Mechanics of Solids** Time: 02:30 PM TO 05:00 PM Total Marks: 70 ## **Instructions:** - 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. | Q.1 | (a)
(b)
(c) | State's Law of Parallelogram of forces. Define force and writes its characteristics. Find the magnitude and direction of resultant of force system shown in fig. 01. | Marks
03
04
07 | |-----|-------------------|--|-------------------------| | Q.2 | (a) | What is meant by free body diagram? Draw free body diagram for box place on a table. Define: (1) Isotropic material (2) Anisotropic | 03 | | | (b) | material (3) Homogeneous material (4) Orthotropic material. | 04 | | | (c) | Find the minimum (least) value of force P to keep the sphere in the position shown in fig. 02. The radius of sphere 1 is 5cm and sphere 2 is 10cm. The weight of sphere 1 is 100N and sphere 2 is 200N. | 07 | | | | OR Draw shear force diagram and bending moment | | | | (c) | diagram for a beam shown in fig. 03. | 07 | | Q.3 | (a) | What is difference between deficient truss and redundant truss. | 03 | | | (b)
(c) | Explain types of supports with usual notations. Find the CG of plane lamina shown in fig 4. | 04
07 | | | (C) | OR | 07 | | Q.3 | (a) | Explain: (1) Poisson's ratio (2) Hook's law (3) Bulk modulus. A her of 3m long and 20mm diameter is rigidly | 03 | | | (b) | A bar of 3m long and 20mm diameter is rigidly fixed in two supports at certain temperature. If temperature is raised by 60° C, find the thermal stress and strain of the bar. Also find thermal stress and strain if support yields by 2 mm. Take $\alpha = 12 \times 10^{-6}$ / °C and E = 2×10^{5} N/mm ² . | 04 | | | (c) | State and explain with figure Pappu's –Guildinus theorem of surface area of Revolution. | 07 | | Q.4 | (a) | Enlist the assumptions made in theory of torsion. A beam simple supported and carries an U.D.L. | 03 | | | (b) | of 50 kN/m over whole span. The size of beam is 150mm x 400mm. If maximum stress in the material of beam is 100N/mm ² find the span of beam. | 04 | | | (c) | Determine the centroid of the section shown in fig. 05. | 07 | | | | A load of 10 kN is to be raised with help of a | | |-----|------------|--|----| | Q.4 | (a) | steel wire. Find the minimum diameter of the wire, if the stress is not to be exceed 80 N/mm ² . | 03 | | | (b) | Explain types of beams with notations. | 04 | | | (c) | Determine moments of inertia of a section shown in fig. 06 about horizontal centroidal axis. | 07 | | Q.5 | (a) | Define: (1) Shear Force (2) Bending Moment (3) Points of contraflexure | 03 | | | (b) | Derive the relation between : (1) Young's Modulus (2) Modulus of Rigidity (3) Possion's Ratio | 04 | | | (c) | A hollow steel shaft, 3m of length must transmit a torque of 25 kNm. The total angle of twist in this length is not to exceed 2.5° and the allowable shearing stress in the material is 90 MPa. Calculate the inside diameter of the shaft and thickness of the metal. $G = 85 \text{ GN/m}^2$. | 07 | | | | OR | | | Q.5 | (a) | Draw shear stress distribution diagram for: (1) I section (2) Circular section (3) Triangular section | 03 | | | (b) | Explain assumptions made in theory of pure bending. | 04 | | | (c) | A square prism of metal 60mm x 60mm in cross section and 300mm long is subjected to a tensile stress of 450 MPa along its longitudinal axis, lateral compression of 240 MPa and lateral tension of 120 MPa along the pair of sides. If $E = 150$ GPa, calculate the changes in dimensions, change in volume of metal. $u = 0.36$. | 07 |