Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER 1&2 EXAMINATION – SUMMER 2020

Subject Code: 3110015 Date:09/11/2020

Subject Name: Mathematics II Time: 10:30 AM TO 01:30 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

- Q.1 (a) Evaluate $\int_{c} \overline{F} \cdot d\overline{r}$ along the parabola $y^{2} = x$ between the points (0, 0) and (1, 1) where $\overline{F} = x^{2}\hat{i} + xy\hat{j}$
 - (b) Find the work done in moving particle from A (1, 0, 1) to B (2,1,2) 04 along the straight-line AB in the force field $\bar{F} = x^2 \hat{i} + (x y) \hat{j} + (y + z) \hat{k}$
 - (c) Verify green's theorem for $\iint_c (2xydx y^2dy)$ where C is the boundary of the region bounded by the ellipse $3x^2 + 4y^2 = 12$
- Q.2 (a) Find the Laplace transform of $te^{-4t} \sin 3t$.
 - (b) Find the inverse Laplace transform of $\frac{5s+3}{(s-1)(s^2+2s+5)}$.
 - (c) Show that the vector field $\overline{F} = (y \sin z \sin x)\hat{i} + (x \sin z + 2yz)\hat{j} + (xy \cos z + y^2)\hat{k}$ is conservative and find the corresponding scalar potential.

OR

- (c) Show that $\overline{F} = 2xyz\hat{i} + (x^2z + 2y)\hat{j} + x^2y\hat{k}$ is irrotational and find a scalar function ϕ such that $\overline{F} = grad\phi$.
- Q.3 (a) Find the directional derivative of $f(x, y) = xy + xe^y + \cos(xy)$ at the point P(1,0) in the direction of $\overline{u} = 3\hat{i} 4\hat{j}$.
 - (b) Find the inverse Laplace transform of $\log \left(1 + \frac{1}{s^2}\right)$.
 - (c) Find the singular solution and general solution of $y + px = x^4 p^2$

OR

- Q.3 (a) Find the Laplace transform of $\frac{\cos at \cos bt}{t}$.
 - Show that $\int_{0}^{\infty} \frac{\omega^{3} \sin \omega x}{\omega^{4} + 4} d\omega = \frac{\pi}{2} e^{-x} \cos x; x > 0.$
 - (c) Find the power series solution of y' 2xy = 0; y(0) = 1 near x = 0.

Q.4	(a)	Find the Laplace transform of $e^{-t} \{1-u(t-2)\}$.	03
	(b)	Solve $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$ with $x = 2$, $\frac{dx}{dt} = -1$ at $t = 0$.	04
	(c)	Solve $(D^2 - 1)y = xe^x \sin x$	07
		OR	
Q.4	(a)	Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$	03
	(b)	Using method of variation of parameter, solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$.	04
	(c)	Using method of undetermined coefficients solve	07
		$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x^2 e^x.$	
Q.5	(a)	Classify the singular points of $x^2y'' + xy' - 2y = 0$.	03
	(b)	Solve $\frac{d^2y}{dx^2} + 9y = \sin 2x \sin x.$	04
	(c)	Solve (i) $(x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0.$	07
		(ii) $\frac{dy}{dx} + y \cot x = 2 \cos x$.	
		OR	
Q.5	(a)	Solve $\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}$.	03
	(b)	Solve $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + y = \cos(\ln x)$.	04
	(c)	Using Frobenius method solve $2x^2y'' + xy' - (x+1)y = 0$.	07
