GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-I \&II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 2110015
Date: 01/06/2019
Subject Name: Vector Calculus \& Linear Algebra
Time: 10:30 AM TO 01:30 PM
Total Marks: 70

Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining six questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. $1 \quad$ Objective Question (MCQ)

(a)

1. The matrix $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is in the form
(a) Row
(b) Reduced
row
(c)
Both (a) and (b).
(d) None. echelon. echelon.
2. For $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ the $\left|\mathrm{A}^{\mathrm{k}}\right|=$ \qquad
(a)
(b)
2 (c)
2^{k}
(d)
$2^{\mathrm{k}-1}$
3. If u and v are vectors in a real inner product space, and $\|\mathrm{u}\|=2,\|\mathrm{v}\|=3$, then $|<u, v\rangle \mid \leq$ \qquad
(a)
6
(b)
3
(c)
2
(d)
1.5
4. Which of the following doesn't lie in the space spanned by $\cos ^{2} x$ and $\sin ^{2} x$?
(a) 1
(b)
0
(c) $\quad \operatorname{Sin} \mathrm{x}$
(d)
$\operatorname{Cos} 2 \mathrm{x}$
5. Dimension of the subspace $\left\{p(x) \in P_{2}: p(0)=0\right\}$ of $P_{2}=\left\{a+b x+c x^{2}: a, b, c \in R\right\}$ is
(a)
3
(b)
2
(c)
1
(d)
0
6. Which of the following subsets of R^{2} is linearly dependent?
(a) $\{(1,2),(2,1)\}$
(b) $\{(1,2),(2,1),(1,1)\}$
(c) $\{(1,2)\}$
(d) None
7. Let $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(x, 0)$ then $\operatorname{Ker}(T)=$ \qquad
(a) Y -axis
(b) $\quad \mathrm{X}$-axis
(c) Origin
(d) None
(b)
8. Which of the following is not an elementary matrix?
(a)
$\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{lll}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right)$
9. For $\bar{a}=(1,-1,2), \bar{b}=(1,3,1)$ are vectors of R^{3} with Euclidean inner product then $\cos \theta=$ \qquad , where θ is the angle between the two vectors.
(a)
1
(b)
0
(c)
-3
(d)
6
10. Which of the following is not true?
(a) $(A B)^{T}=B^{T} A^{T}$
(b) $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
(c) $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
(d) $\quad \mathrm{A}^{\mathrm{T}}=-\mathrm{A}$
11. If A is $n \times n$ matrix having rank $n-1$ then A, A^{2}, A^{3}, \qquad A^{k}, \ldots. have common eigenvalue \qquad
(a)
1
(b)

$$
-1
$$

(c)
(d)
2
5. If A is unitary matrix then $\mathrm{A}^{-1}=$ \qquad
(a)
A
(b)
(c)
A^{T}
(d)
I
6. The dimension of the solution space of $x-y=0$ is \qquad
(a)
0
(b)
(c)
2
(d)
3
7. If $f(x, y, z)=x y z$ then $\operatorname{Curl}(\operatorname{grad} f)=$ \qquad
(a)
0
(b)
(c)
$x i+y j+z k$
(d) xyz
Q. 2 (a) Which of the following are linear combination of $u=(0,-2,2)$ and $v=(1,3,-1)$? Justify! (i) $(2,2,2)$, (ii) $(0,4,5)$
(b) Using Gram-Schmidt orthogonalization process find the corresponding orthonormal set to $\{(1,1,1),(0,1,1),(0,0,1)\}$.
(c) Using Gauss- Jordan elimination find the inverse of $\left(\begin{array}{ccc}-\mathbf{1} & \mathbf{3} & -\mathbf{4} \\ \mathbf{2} & \mathbf{4} & \mathbf{1} \\ -\mathbf{4} & \mathbf{2} & -\mathbf{8}\end{array}\right)$.
Q. 3 (a) Find the rank of the matrix and basis of the null space of $\left(\begin{array}{ccc}\mathbf{1} & -\mathbf{1} & \mathbf{3} \\ \mathbf{5} & -\mathbf{4} & -\mathbf{4} \\ \mathbf{7} & -\mathbf{6} & \mathbf{2}\end{array}\right)$.
(b) Solve the system of linear equations using Gauss elimination method:

$$
x+y+2 z=8,-x-2 y+3 z=1,3 x-7 y+4 z=10
$$

(c) Show that the set of all real numbers of the form $(x, 1)$ with operations $(x, 1)+\left(x^{\prime}, 1\right)=\left(x+x^{\prime}, 1\right)$ and $k(x, 1)=(k x, 1)$ forms a vector space.
Q. 4 (a) Determine whether the following are linear transformation or not?
(i) $\mathrm{T}: \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}, \mathrm{~T}(\mathrm{p}(\mathrm{x}))=\mathrm{p}(\mathrm{x}+1)$,
(ii) $\mathrm{T}: \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}, \mathrm{~T}\left(\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\right)=(\mathrm{a}+1)+(\mathrm{b}+1) \mathrm{x}+(\mathrm{c}+1) \mathrm{x}^{2}$.
(b) Which of the following sets of vectors of R^{3} are linearly independent? Justify.

$$
\text { (i) }\{(4,-1,2),(-4,10,2)\} \text { (ii) }\{(-3,0,4),(5,-1,2),(1,1,3)\}
$$

(c) Find the eigenvalues and bases for the eigenspaces for A^{11},

$$
A=\left(\begin{array}{ccc}
-1 & -2 & -2 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right)
$$

Q. 5 (a) Find basis of kernel and range of $T: R^{2} \rightarrow R^{2}$, defined by

$$
T(x, y)=(2 x-y,-8 x+4 y)
$$

(b) Which of the following are basis of R^{3} ? Justify!
(i) $\{(1,0,0),(2,2,0),(3,3,3)\}$, (ii) $\{(3,1,-4),(2,5,6),(1,4,8)\}$
(c) Let $\mathrm{T}: \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}$, defined by $\mathrm{T}(\mathrm{p}(\mathrm{x}))=\mathrm{p}(3 \mathrm{x}-5)$
(i) Find the matrix of T with respect to the basis $\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$.
(ii) Use the indirect procedure using matrix to compute $\mathrm{T}\left(1+2 \mathrm{x}+3 \mathrm{x}^{2}\right)$.
(iii) Check the result in (b) by computing $\mathrm{T}\left(1+2 \mathrm{x}+3 \mathrm{x}^{2}\right)$ directly.
Q. 6 (a) Show that $\overline{\boldsymbol{F}}=(\boldsymbol{y i}-\boldsymbol{x j}) / \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{y}^{\mathbf{2}}$ is irrotational.
(b) Find the directional derivative of $f(x, y, z)=x^{2} z+y^{3} z^{2}-x y z$ at $(1,1,1)$ in the direction of the vector $(-1,0,3)$.
(c) Using Green's theorem evaluate $\oint_{\boldsymbol{C}}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$, where C is the boundary of the region bounded by $y^{2}=x$ and $y=x^{2}$.
Q. 7 (a) Find the work done by $\bar{F}=\left(\mathrm{y}-\mathrm{x}^{2}\right) \mathrm{i}+\left(\mathrm{z}-\mathrm{y}^{2}\right) \mathrm{j}+\left(\mathrm{x}-\mathrm{z}^{2}\right) \mathrm{k}$ over the curve

$$
\mathbf{r}(\mathrm{t})=\mathrm{ti}+\mathrm{t}^{2} \mathrm{j}+\mathrm{t}^{3} \mathrm{k} ; 0 \leq t \leq 1, \text { from }(0,0,0) \text { to }(1,1,1)
$$

(b) Use Cramer's rule to solve: $x+2 z=6,-x+4 y+6 z=30,-x-2 y+3 z=8$.
(c) Verify divergence theorem for $\bar{F}=\mathrm{x} i+\mathrm{yj}+\mathrm{zk}$ over the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}$.

