bout	1.00.		
		GUJARAT TECHNOLOGICAL UNIVERSITY	
BE - SEMESTER-I &II (NEW) EXAMINATION – SUMMER-2019			
Subject Code: 2110015 Date: 01/06/2019			
Subject Name: Vector Calculus & Linear Algebra			
	-	D:30 AM TO 01:30 PM Total Marks: 70	
	uctio		
111501	1. Question No.1 is compulsory. Attempt any four out of remaining six questions.		
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1		Objective Question (MCQ)	
	(a)		07
	1.	The matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is in the form	
	1.		
		(a) Row (b) Reduced row (c) Both (a) and (b). (d) None.	
		echelon. echelon.	
	2.	For $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ the $ A^k =$	
	•	(a) 1 (b) 2 (c) 2^k (d) 2^{k-1}	
	3.	If u and v are vectors in a real inner product space, and $ u =2$, $ v =3$,	
		then $ \langle u, v \rangle \leq $	
		(a) 6 (b) 3 (c) 2 (d) 1.5	
	4.	Which of the following doesn't lie in the space spanned by $\cos^2 x$ and $\sin^2 x$?	
	_	(a) 1 (b) 0 (c) $\sin x$ (d) $\cos 2x$	
	5.	Dimension of the subspace { $p(x) \in P_2 : p(0) = 0$ } of $P_2 = \{a+bx+cx^2 : a, b, c \in R\}$ is	
		(a) 3 (b) 2 (c) 1 (d) 0	
	6.	Which of the following subsets of R^2 is linearly dependent?	
		(a) $\{(1,2), (2,1)\}$ (b) $\{(1,2), (2,1), (1,1)\}$ (c) $\{(1,2)\}$ (d) None	
	7.	Let T: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by T(x,y) = (x,0) then Ker (T) =	
		(a) Y-axis (b) X-axis (c) Origin (d) None	
	(b)		07
	1.	Which of the following is not an elementary matrix?	
		(a) $\begin{pmatrix} 1 & 1 & 0 \\ \end{pmatrix}$ (b) $\begin{pmatrix} 0 & 0 & 1 \\ \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 & 0 \\ \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 0 & 0 \\ \end{pmatrix}$	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	•		
	2.	For $\vec{a} = (1, -1, 2)$, $\vec{b} = (1, 3, 1)$ are vectors of R ³ with Euclidean inner product then	
		$\cos \theta =$, where θ is the angle between the two vectors.	
		(a) 1 (b) 0 (c) -3 (d) 6	
	3.	Which of the following is not true?	
		(a) $(AB)^{T} = B^{T}A^{T}$ (b) $(AB)^{-1} = B^{-1}A^{-1}$ (c) $(A^{T})^{T} = A$ (d) $A^{T} = -A$	
	4.	If A is $n \times n$ matrix having rank $n-1$ then A, A^2, A^3 ,, A^k ,, have common	
		eigenvalue	
		(a) 1 (b) -1 (c) 0 (d) 2	
	5.	If A is unitary matrix then $A^{-1} =$	
		(a) A (b) A^2 (c) A^T (d) I	
	6.	The dimension of the solution space of $x - y = 0$ is	
		(a) 0 (b) 1 (c) 2 (d) 3	
	7.	If $f(x,y,z) = xyz$ then Curl (grad f) =	
		(a) 0 (b) x (c) $xi+yj+zk$ (d) xyz	

- **Q.2** (a) Which of the following are linear combination of u = (0, -2, 2) and v = (1, 3, -1)? 03 Justify! (i) (2,2,2), (ii) (0, 4, 5)(b) Using Gram-Schmidt orthogonalization process find the corresponding orthonormal 04 set to { (1, 1, 1), (0, 1, 1), (0, 0, 1) }. (c) Using Gauss- Jordan elimination find the inverse of $\begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -8 \end{pmatrix}$. 07 (a) Find the rank of the matrix and basis of the null space of $\begin{pmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{pmatrix}$. 03 **Q.3** Solve the system of linear equations using Gauss elimination method: 04 **(b)** x + y + 2z = 8, -x - 2y + 3z = 1, 3x - 7y + 4z = 10. (c) Show that the set of all real numbers of the form (x, 1) with operations 07 (x, 1) + (x', 1) = (x + x', 1) and k(x, 1) = (kx, 1) forms a vector space. (a) Determine whether the following are linear transformation or not? 03 **Q.4** (i) T: P₂ \rightarrow P₂, T(p(x)) = p(x + 1), (ii) T: P₂ \rightarrow P₂, T(a + bx + cx²) = (a + 1) + (b + 1)x + (c + 1)x². (b) Which of the following sets of vectors of \mathbb{R}^3 are linearly independent? Justify. 04 (i) { (4, -1, 2), (-4, 10, 2) } (ii) { (-3, 0, 4), (5, -1, 2), (1, 1, 3) } Find the eigenvalues and bases for the eigenspaces for A^{11} , 07 (c) $\mathbf{A} = \begin{pmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$ Q.5 (a) Find basis of kernel and range of T: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$, defined by 03 T(x, y) = (2x - y, -8x + 4y)(b) Which of the following are basis of \mathbb{R}^{3} ? Justify! 04 (i) { (1, 0, 0), (2, 2, 0), (3, 3, 3) }, (ii) { (3, 1, -4), (2, 5, 6), (1, 4, 8) } (c) Let T: $P_2 \rightarrow P_2$, defined by T(p(x)) = p(3x - 5)07 (i) Find the matrix of T with respect to the basis $\{1, x, x^2\}$. (ii) Use the indirect procedure using matrix to compute $T(1 + 2x + 3x^2)$. (iii) Check the result in (b) by computing $T(1 + 2x + 3x^2)$ directly. (a) Show that $\overline{F} = \frac{(yi - xj)}{x^2 + y^2}$ is irrotational. 0.6 03 (b) Find the directional derivative of $f(x, y, z) = x^2 z + y^3 z^2 - xyz$ at (1,1,1) in the direction 04 of the vector (-1,0,3). Using Green's theorem evaluate \oint_C $(3x^2 - 8y^2) dx + (4y - 6xy) dy$, where C is the 07 (c) boundary of the region bounded by $y^2 = x$ and $y = x^2$.
- Q.7 (a) Find the work done by $\overline{F} = (y x^2) i + (z y^2) j + (x z^2) k$ over the curve 03 r(t) = t i + t² j + t³ k; 0 ≤ t ≤ 1, from (0,0,0) to (1,1,1).
 - (b) Use Cramer's rule to solve: x + 2z = 6, -x + 4y + 6z = 30, -x 2y + 3z = 8. 04
 - (c) Verify divergence theorem for $\overline{F} = x i + yj + zk$ over the sphere $x^2 + y^2 + z^2 = a^2$. 07