GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-I &II (NEW) EXAMINATION – SUMMER-2019

Subject Code: 2110014

Subject Name: Calculus

Time: 10:30 AM TO 01:30 PM

Instructions:

Q.1

- 1. Question No.1 is compulsory. Attempt any four out of remaining six questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Objective Question (MCQ)

(a) 1. For the Jacobian J, value of the $J \cdot J'$ is (a)**1** (b) -1 (3) 0 (4) 2 Value of $\frac{dy}{dx}$ for $ax^2 + 2hxy + by^2 = 1$ is (a) $\frac{hx+by}{ax+hy}$ (b) $\frac{ax+hy}{hx+by}$ (c) $-\frac{ax+hy}{hx+by}$ (d) $-\frac{hx+by}{ax+hy}$ 2. $u = sin^{-1}\frac{x}{y}$ is a homogeneous function of degree 3. (a) 1/2 (b) **0** (c) **1** (d) **-1** 4. The curve r = 2 is (a) straight line (b) point at distance '2' on initial line (c) circle with centre origin and radius 2 (d) cardioid If $x = r\cos\theta$, $y = r\sin\theta$, then which is correct? (a) $r = x^2 + y^2$, $\theta = \frac{x}{y}$ (b) $r = \sqrt{x^2 + y^2}$, $\theta = \tan\frac{y}{x}$ 5. (c) $r = x^2 + y^2$, $\theta = \tan^{-1} \frac{y}{x}$ (d) $r = \sqrt{x^2 + y^2}$, $\theta = \tan^{-1} \frac{y}{x}$ Infinite Sequence {1,1,1, ... } is 6. (a) convergent (b) divergent (c) oscillatory (d) None of these 7. Infinite Series $1 + 1 + 1 + \dots is$ (a) convergent (b) divergent (c) oscillatory (d) None of these **(b)** Infinite series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - + \cdots$ is 1. (a) convergent (b) divergent (c) oscillatory (d) None of these Curve $(y-1)^2 = x - 5$ is symmetric to 2. (a) X-axis (b) line y = -x (c) line y = x (d) Y- axis $\tan \pi x$ 3. lim x $x \rightarrow 0$ (a) $\frac{1}{\pi}$ (b) 0 (c) ∞ (d) π The sum of the series $\sum_{n=0}^{\infty} \frac{1}{2^n}$ is 4. (a) ∞ (b) 1/2 (c) 2 (d) 1 The Maclaurin series for the function $(x + 1)^2$ is 5. (a) $1 + x + x^2$ (b) $1 + 2x + x^2$ (c) 1 + x (d) $x + x^2$ The straight line y = 2 is revolved about x- axis between 6. $0 \ll x \ll 4$. The generated solid is

- (a)cone (b) sphere (c) cuboid (d) cylinder
 7. For a series Σ_{n=1}[∞] a_n, if lim a_n ≠ 0, then
 (a) series is convergent (b) series is divergent
 - (c) sum of series is finite number
 - (d) series is conditionally convergent

Total Marks: 70

Date: 06/06/2019

Marks

07

07

Q.2	(a)	Find the Taylor series for $f(x) = \frac{1}{x}$ at $a = 2$.	03
	(b)	Is the series absolutely convergent or conditionally convergent?	04
	(c)	$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + - \cdots$ (i) Discuss the convergence of the series $\frac{x}{1 \cdot 2} + \frac{x^2}{2 \cdot 3} + \frac{x^3}{3 \cdot 4} + \cdots$	04
		(ii) Find the Radius of convergence for the series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$.	03
Q.3	(a) (b) (c)	Evaluate $\lim_{x\to 0} x \log x$ Trace the curve $y^2(a+x) = x^2(a-x)$, $a > 0$. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if $p > 1$ and divergent if $p \ll 1$.	03 04 07
Q.4	(a)	Evaluate $\int_0^3 \frac{dx}{(x-1)^{2/3}}$.	03
		Find the equation of the tangent plane and normal line to the surface $x^2 + y^2 + z - 9 = 0$ at (1, 2, 4).	04
	(c)	(i)Evaluate $\int_{-\infty}^{\infty} \frac{dx}{1+r^2}$.	04
		(ii) Evaluate $\lim_{x \to \frac{\pi}{2}} (1 - \cos x)^{\tan x}$	03
Q.5	(a) (b)	If $u = f(x - y, y - z, z - x)$, prove that $u_x + u_y + u_z = 0$. Find maximum and minimum values. $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$	03 04
	(c)	If $u = tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$, prove that (i) $xu_x + yu_y = \sin 2u$ (ii) $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = 2\sin u\cos 3u$	07
Q.6	(a)		03
	(b)	revolved about the x -axis to generate a solid. Find its volume. Using volume by slicing method, find the volume of a cylinder with	04
	(c)	radius 'r' and height 'h'. Evaluate $\iint_R x dx dy$; R is triangle (0,0), (1.0), (1,1) using transformations $x = u, y = uv$.	07
Q.7	(a)	Evaluate $\iint r^3 dr d\theta$ over the area bounded between the circles	03
	(b)	$r = 2\cos\theta$ and $r = 4\cos\theta$. Evaluate	04
	(c)	$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{(x+y)^{2}} x dz dy dx$ Change the order of integration and evaluate. $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$ *********	07