\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-I \&II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 2110014
Date: 06/06/2019
Subject Name: Calculus
Time: 10:30 AM TO 01:30 PM
Total Marks: 70
Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining six questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 1 Objective Question (MCQ)

(a)

1. For the Jacobian I, value of the $I^{*} J^{t}$ is
(a)1
(b) -1
(3) 0
(4) 2
2. Value of $\frac{d y}{d x}$ for $a x^{2}+2 h x y+b y^{2}=1$ is
(a) $\frac{h x+b y}{a x+h y}$
(b) $\frac{a x+h y}{h x+b y}$
(c) $-\frac{a x+h y}{h x+b y}$
(d) $-\frac{h x+b y}{a x+h y}$
3. $u=\sin ^{-1} \frac{x}{y}$ is a homogeneous function of degree
(a) $1 / 2$
(b) 0
(c) 1
(d) -1
4. The curve $r=2$ is
(a) straight line
(b) point at distance ' 2 ' on initial line
(c) circle with centre origin and radius 2
(d) cardioid
5. If $x=r \cos \theta, y=r \sin \theta$, then which is correct?
(a) $r=x^{2}+y^{2}, \theta=\frac{x}{y}$
(b) $r=\sqrt{x^{2}+y^{2}}, \theta=\tan \frac{y}{x}$
(c) $r=x^{2}+y^{2}, \theta=\tan ^{-1} \frac{y}{x}$
(d) $r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1} \frac{y}{x}$
6. Infinite Sequence $\{1,1,1, \ldots\}$ is
(a) convergent
(b) divergent (c) oscillatory
(d) None of these
7. Infinite Series $1+1+1+\cdots$ is
(a) convergent
(b) divergent (c) oscillatory
(d) None of these
(b)
8. Infinite series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-+\cdots$ is
(a) convergent (b) divergent (c) oscillatory
(d) None of these
9. Curve $(y-1)^{2}=x-5$ is symmetric to
(a) X -axis (b) line $y=-x$ (c) line $y=x$
(d) Y-axis
10. $\lim _{x \rightarrow 0} \frac{\tan \pi x}{x}$
(a) $\frac{1}{\pi}$
(b) 0
(c) ∞
(d) π
11. The sum of the series $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$ is
(a) ∞
(b) $1 / 2$
(c) 2
(d) 1
12. The Maclaurin series for the function $(x+1)^{2}$ is
(a) $1+x+x^{2}$
(b) $1+2 x+x^{2}$
(c) $1+x$
(d) $x+x^{2}$
13. The straight line $y=2$ is revolved about x - axis between $0 \ll x \ll 4$. The generated solid is
(a)cone (b) sphere (c) cuboid (d) cylinder
14. For a series $\sum_{n=1}^{\infty} a_{n}$, if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then
(a) series is convergent (b) series is divergent
(c) sum of series is finite number
(d) series is conditionally convergent
Q. 2 (a) Find the Taylor series for $f(x)=\frac{1}{x}$ at $a=2$.
(b) Is the series absolutely convergent or conditionally convergent?
$1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+-\cdots$
(c) (i) Discuss the convergence of the series
$\frac{x}{1 \times 2}+\frac{x^{2}}{2 \times 3}+\frac{x^{3}}{3 \times 4}+\cdots$
(ii) Find the Radius of convergence for the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$.
Q. 3 (a) Evaluate $\lim _{x \rightarrow 0} x \log x$ 03
(b) Trace the curve $y^{2}(a+x)=x^{2}(a-x), a>0$. 04
(c) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent 07 if $p \ll 1$.
Q. 4 (a) Evaluate $\int_{0}^{3} \frac{d x}{(x-1)^{2 / 3}}$.
(b) Find the equation of the tangent plane and normal line to the surface
$x^{2}+y^{2}+z-9=0$ at $(1,2,4)$.
(c) (i)Evaluate $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$.
(ii) Evaluate $\lim _{x \rightarrow \frac{\pi}{2}}(1-\cos x)^{\tan x}$03
Q. $5 \quad$ (a) If $u=f(x-y, y-z, z-x)$, prove that $u_{x}+u_{y}+u_{z}=0$. 03
(b) Find maximum and minimum values.

$$
f(x, y)=2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}
$$

(c) If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$, prove that
(i) $x u_{x}+y u_{y}=\sin 2 u$
(ii) $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=2 \sin u \cos 3 u$
Q. 6 (a) The region between the curve $y=\sqrt{x}, 0 \ll x \ll 4$ and the x-axis is03 revolved about the x-axis to generate a solid. Find its volume.
(b) Using volume by slicing method, find the volume of a cylinder with 04 radius ' r ' and height ' h '.
(c) Evaluate $\iint_{R} x d x d y ; R$ is triangle $(0,0),(1.0),(1,1)$ using 07 transformations $x=u, y=u v$.
Q. 7 (a) Evaluate $\iint r^{3} d r d \theta$ over the area bounded between the circles 03 $r=2 \cos \theta$ and $r=4 \cos \theta$.
(b) Evaluate
$\int_{0}^{1} \int_{0}^{1-x^{(x+y)^{2}}} \int_{0}^{2} x d z d y d x$
(c) Change the order of integration and evaluate.

