\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1 $\mathbf{1}^{\text {st }} / 2^{\text {nd }}$ EXAMINATION (NEW SYLLABUS) - SUMMER 2018

Subject Code: 2110015

Date: 17-05-2018
Subject Name: Vector Calculus and Linear Algebra
Time: 02:30 pm to 05:30 pm
Total Marks: 70 Instructions:

1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 1

Objective Question (MCQ)
Mark
(a) Choose the appropriate answer for the following questions.

1. A square matrix whose determinant is non zero is called
(A) Singular (B) non-singular (C) invertible (D) both B and C
2. If A and B are non singular matrices then $(A B)^{-1}=$ \qquad
(A) $A^{-1} B^{-1}$
(B) $A B$
(C) $B^{-1} A^{-1}$
(D) none of these
3.

If $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ then A is in
(A) Row echelon form (B) Reduced Row echelon form (C) both A and B (D) none of these
4. For what values of k does the system $x+y=2,3 x+3 y=k$ has infinitely many solutions
(A) $K=5$
(B) $k=4$
(C) $\mathrm{k}=6$
(D) $k=1$
5. If in a set of vectors atleast one member can be expressed as a linear combination of the remaining vectors then the set is
(A) Linearly independent (B) Linearly dependent (C) basis (D) none of these
6. If V is any vector space and S be a subset of V then S is called basis for V if
(A) S is Linearly independent
(B) S spans V
(C) both A and B
(D) S is Linearly dependent
7. For what value of k the vectors u and v are orthogonal where $u=(2,1,3)$, $\mathrm{v}=(1,7, \mathrm{k})$
(A) $K=-3$
(B) $k=1$
(C) $k=5$
(D) $k=2$
(b) Choose the appropriate answer for the following questions.
1.

The eigen values of a matrix $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 4\end{array}\right]$ are
(A) 1,4
(B) $-1,-4$
(C) 1,3
(D) $-1,3$
2. If A is a nxn size invertible matrix then rank of A is
(A) $n-1$
(B) n
(C) $2 n$
(D) $n+1$
3. If \bar{F} is solenoidal then
(A) $\bar{\nabla} \bar{F}=0$
(B) $\nabla \times \bar{F}=0$
(C) $\nabla \cdot \bar{F}=0$
(D) none of these
4. The mapping $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x, y,-z)$ is called as
(A) Contraction
(B) Projection
(C) Reflection
(D) Rotation
5. The linear transformation $T: V \rightarrow W$ is one to one if and only if the nullspace of T consists of only
(A) Identity vector (B) zero vector (C) any non zero vector (D) none of these
6.

If $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$ then the rank of the matrix A is
(A) 1
(B) 2
(C) 0 (D) 4
7. Let A be a skew-symmetric matrix then
(A) $a_{i j}=a_{j i}$
(B) $a_{i j}=-a_{j i}$
(C) $a_{i i}=0$
(D) both B and C
Q. 2 (a) Find the unit vector normal to the surface $x y^{3} z^{2}=4$ at $(-1,-1,2)$
(b)

Express the matrix $A=\left[\begin{array}{ccc}3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0\end{array}\right]$ as the sum of a symmetric and skey-symmetric matrix.
(c) Investigate for what values of λ and μ the equations
$2 x+3 y+5 z=9,7 x+3 y-2 z=8,2 x+3 y+\lambda z=\mu$ have
(1) No solution (2) a unique solution (3) infinite number of solutions
Q. 3 (a)

Find the rank of the matrix $\left.\left\lvert\, \begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right.\right]$
Find the inverse of the matrix $\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4\end{array}\right]$ by Gauss Jordan Method
(c) For the basis $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ of R^{3} where
$v_{1}=(1,1,1), v_{2}=(1,1,0), v_{3}=(1,0,0)$ Let $T: R^{3} \rightarrow R^{2}$ be the linear transformation such that
$T\left(v_{1}\right)=(1,0), T\left(v_{2}\right)=(2,-1), T\left(v_{3}\right)=(4,3)$ find a formula for $T\left(x_{1}, x_{2}, x_{3}\right)$ and then use the formula to find $T(4,3,-2)$
Q. 4 (a) Determine whether the vector $v=(-5,11,-7)$ is a linear combination
of the vectors $v_{1}=(1,-2,2), v_{2}=(0,5,5), v_{3}=(2,0,8)$
(b) Solve the linear
system $x+y+z=4,-x-y+z=-2,2 x-y+2 z=2$ by gauss elimination method.
(c) Let R^{3} have the Euclidean inner product. Use the gram schmidt process to transform the basis (u_{1}, u_{2}, u_{3}) in to Orthonormal basis where

$$
u_{1}=(1,0,0), u_{2}=(3,7,-2), u_{3}=(0,4,1)
$$

Q. 5 (a) Find the eigen values and corresponding eigen vectors of $A=\left[\begin{array}{cc}2 & -12 \\ 1 & -5\end{array}\right]$
(b)

Let $A=\left[\begin{array}{cc}-2 & 3 \\ 1 & -2 \\ 1 & -1\end{array}\right]$ and $b=\left\{\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ then find the least squares solutions to $\mathrm{AX}=\mathrm{b}$
(c) Let $T: R^{3} \rightarrow R^{3}$ be a linear operator and $B=\left(v_{1}, v_{2}, v_{3}\right)$ a basis for R^{3}. Suppose that $T\left(v_{1}\right)=(1,1,0), T\left(v_{2}\right)=(1,0,-1), T\left(v_{3}\right)=(2,1,-1)$ then
(1) Is $(1,2,1)$ in $R(T)$? (2) Find a basis for $R(T)$.
Q. 6 (a) Find the work done by the force $\bar{F}=\left(3 x^{2}-3 x\right) i+3 z j+k$ along the straight line $t i+t j+t k, 0 \leq t \leq 1 .$.
(b) Check whether the vectors $(2,-3,1),(4,1,1),(0,-7,1)$ is a basis for R^{3}
(c) Verify Green's Theorem for $\bar{F}=(x-y) i+x j$ and C is $x^{2}+y^{2}=1$
Q. 7 (a) Find the directional derivative of $4 x z^{2}+x^{2} y z a t(1,-2,-1)$ in the direction of $2 i-j-2 k$
(b) Show that $\bar{F}=\left(e^{x} \cos y+y z\right) i+\left(x z-e^{x} \sin y\right) j+(x y+z) k$ is conservative and find the potential function.
(c) Let $\quad V=\{(a, b) / a, b \in R\}$ and let $v=\left(v_{1}, v_{2}\right), w=\left(w_{1}, w_{2}\right)$ then define $\left(v_{1}, v_{2}\right)+\left(w_{1}, w_{2}\right)=\left(v_{1}+w_{1}+1, v_{2}+w_{2}+1\right)$ and $c\left(v_{1}, v_{2}\right)=\left(c v_{1}+c-1, c v_{2}+c-1\right)$ then verify that V is a vector space.

