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Abstract 

Induction motors are widely used as electrical load in all kind of industries. Induction 

motors are appears to various abnormalities/faults during their operation.  Accurate fault 

identification is the prime industrial need to reduce breakdown maintenance and revenue 

losses. Induction motors appears to different kind of faults or abnormalities which can 

majorly categorized in two parts external (e.g., phase failure, unbalance supply, stalling, 

overvoltage, undervoltage overload and reverse phase sequence) and internal (stator 

interterm, rotor bar, eccentricity and bearing failure) faults. There are invasive and 

noninvasive methods for fault detection. The noninvasive methods are more preferable 

because they are based on easily accessible and economical to diagnose the machine 

conditions without disintegrating the machine.  

Low cost thermal protection devices like eutectic alloy or bi-metal type overload relays, 

Electromagnetic relays and static relays are not suitable for multiclass faults identification. 

In conventional protection, relays applied for one hazard may operate for others as some 

overlap found particularly in overload versus faults like unbalance voltages/currents, single 

phasing etc. It is more difficult to estimate negative sequence current if loss of phase 

occurs while running. The fault data sets scatter plot (shown in Fig. 3.9 and Fig. 5.7) found 

complex and linearly nonseparable. The relay logic used to identify these faults requires 

sophisticated techniques for accurate, generalized and reliable operation.  

The current interest of academia for the multiple fault diagnosis in induction machines is 

using soft computing techniques mainly artificial neural network (ANN) and fuzzy logic. 

The guiding principle of soft computing techniques is exploiting the tolerance for 

imprecision, uncertainty, and partial truth to achieve tractability, robustness, and low cost 

solution. ANN and clustering based fuzzy logic are suitable and well proven for complex 

and linearly non separable fault identification task. ANN or fuzzy can be used as relaying 

logic for multiple fault identification.  Neural network provide a natural framework for 

fault identification and it can approximate abnormal behaviour of dynamial systems 

through learning approach. Fuzzy logic can be used to provide a general heuristic solution 

to a particular problem. It can provide a heuristic output as a result of some complex 

computations by quantifying the actual numerical data into heuristic and linguistic terms. 
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The main objective of thesis is to identify external faults using ANN and fuzzy logic 

approaches.  

In first phase, external faults like overload (OL), overvoltage (OV), undervoltage (UV), 

single phasing of any phase  (SP) and voltage unbalances (VUB) were created alongwith 

normal output (N) conditions for different operating voltage and load conditions in 

MATLAB/Simulink environment. Data sets of three phase RMS voltages and RMS 

currents were obtained as input training and testing feature vector. The classification error 

obtained with well-known statistical linear discriminant analysis (LDA) classifier for 

independent test inputs is high (26.1%). Multilayer perceptron neural network (MLPNN) 

with Levenberg-Marquardt (LM) algorithm is used for external faults identification on 

simulation data sets. Different single hidden layer MLPNN configurations were offline 

train and tested with trial and error method. They are tested with increasing hidden neurons 

for finding best generalized ANN configuration to detect external faults with highest 

stastical parameter like validation subset classification accuracy. Classification accuracy 

(or classification error) is natural performance measure for classification problems. Train 

subset classification accuracy and validation error is also considered to find best 

generalized well trained MLPNN configuration. It is observed through simulation that 

ANN can detect all kind of faults occurs 1 cycle before its refreshing rate.  

In second phase, multilayer perceptron neural network (MLPNN), subtractive clustering 

based Sugeno fuzzy inference system (SC_FIS), probabilistic neural network (PNN) and 

also hybrid adaptive neurofuzzy inference approach were used for the external faults 

identification in MATLAB environment for experimentally obtained data sets. 

Experiments were performed to obtain input vector and evaluate the performance of 

MLPNN, SC_FIS, PNN, and adaptive neurofuzzy inference system (ANFIS) on real time 

data sets. Subtractive clustering based fuzzy inference systems (SC_FIS & ANFIS) are 

used to obtain rules besides good classification accuracy alongwith neural networks in this 

work. To simulate the real field operation of induction motor data sets were logged with 

different loading and at various supply voltage conditions. Induction motor coupled DC 

generator laboratory type setup was used for the practical data sets. Normal conditions and 

five external fault conditions OL, OV, UV, SP and VUB were experimentally simulated to 

obtain the input feature vector. Three phase voltages and currents were sampled and 

logged. Representative samples are used for training and testing inputs. Best generalized 



  

xiii 
 

MLPNN configuration is obtained for practical data sets same as discussed for simulation 

data sets. SC_FIS is used for external faults identification with practical data sets. FISs are 

generated using different cluster radius (0.1 to 0.9). FISs are train and tested with 10-times 

random subsampling train and test data sets. Total average test classification accuracy and 

also test RMSE error are used to find best generalized FIS configuration.  

PNN is used with training and validation (subset of total training data sets) data sets and 

classification accuracy against different radial basis function spread is obtained to find 

spread for which PNN gives most generalized results. The best generalized ANFIS 

configuration is obtained by comparing test classification accuracy of ANFISs obtained 

with different cluster radius. Independent test data sets used as checking data for ANFIS.  

Conventional statistical LDA and simple probabilistic Naïve Bayes classifier (NBC) are 

also used for fault identification performance comparison in terms of statistical measurers 

with soft computing classifiers using total train and independent test practical data sets. 

Soft computing classifiers performance found excellent from classifiers performance 

comparison with respect to classification accuracies (Table 7.1) and with respect to other 

statistical measures sensitivity, specificity, precision and F-measure for train and test data 

sets  (Table 7.14 and 7.15 respectively). MLPNN, PNN, SC_FIS and ANFIS show 

impressive results for train data sets classification accuracy and other statistical measurers. 

MLPNN and SC_FIS generalization performance found better based on independent test 

data sets classification accuracies (98.61% and 97.2% respectively) and other statistical 

measures for all six output conditions.  MLPNN outperforms for external faults 

identification in all statistical measures. SC_FIS and neurofuzzy have advantage of 

obtaining rules for external faults besides good statistical parameters results. 
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CHAPTER - 1 

Introduction 

1.1 Overview 

Induction motors are most widely used industrial load and consumes a major part of 

overall electrical consumption. Fault identification in electrical machines and power 

systems is increasing interest research area for academicians as well as for industry. The 

wide variety of environments and conditions motor exposed to, misoperations and 

manufacturing defects can make it subject to incipient faults or gradual deterioration and 

can lead to motor failure if left undetected. Most electric motor failures interrupt process, 

reduce production and may damage related machinery. Sometimes a small HP motor 

failure can also create hours of plant stoppage in continuous processing industries. Reliable 

and healthy operation of induction motors is the major need of industries. There many 

ways used by the industry to tackle the problem like preventive and corrective 

maintenance, keeping spare motors, protective system etc. In some industries very 

expensive scheduled maintenance performed in order to prevent sudden motor failures. 

Therefore there is considerable demand to reduce maintenance cost and prevent 

unscheduled downtime for electric motors and drive systems. Early fault detection or 

correct fault detection and classification allows scheduling maintenance which reduces the 

maintenance efforts by reducing failure and downtime and improves the overall 

availability of motor driven system. It increases the revenue by reducing failures. 

Induction motors appears to different kind of faults or abnormalities which can majorly 

divided in two parts, external and internal faults. Overload (OL), undervoltage (UV), 

overvoltage (OV), Single phasing (SP), voltage unbalances (VUB), locked rotor, earthfault 

between supply feeder and motor terminals and three phase fault at the terminals are 

categorized as external faults and short circuit, Stator interturn failure, bearing, rotor faults, 

eccentricity as internal faults. Internal as well as external faults accurate diagnosis is 

equally necessary and which can be lead to development of comprehensive protective 

scheme for all faults. There are invasive and noninvasive methods for fault detection. The 
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noninvasive methods are more preferable because they are based on easily accessible and 

inexpensive measurements to diagnose the machine conditions without disintegrating the 

machine [1] [2]. These schemes are suitable for on-line monitoring and fault detection 

purposes [2]. We have worked on most probable five external faults OL, UV, OV, SP and 

VUB identification. 

Fuses and bi-metallic overload relays used for Low-Voltage (LV) induction motors 

protection are roughly emulate the induction motor thermal limit curve. Overload relays 

for Medium-Voltage (MV) induction motors utilize simple thermal models and embedded 

temperature sensors to monitor the winding temperature. These techniques first calculate 

the losses in a motor, and then estimate the stator winding temperature based on motor‟s 

thermal model. However, the main drawback of these thermal model-based approaches is 

that the thermal parameters are not constant and measurements must be made for each 

motor under different operating conditions. Embedded temperature sensors, on other hand, 

may result in false alarms or trips because of disintegration of the connections, noise 

interference and their large time constant. [3] [4].  

Electromechanical relays and static relays are not suitable for multiclass faults 

identification. Induction motor fault diagnosis is likely a highly complex nonlinear 

mapping problem as both the inputs and outputs are multiple variables without clear linear 

relationships. The scatter plot matrix for output classes ( five considered external faults and 

normal condition) with respect to input (3 phase RMS voltages and currents) variable is 

linearly non separable and complex. In conventional protective schemes relays applied for 

one hazard may operate for others as some overlap found particularly in overload versus 

faults, unbalance voltages/currents and single phasing etc. In conventional microprocessor 

based relays negative sequence protection used for cases like voltage unbalance or single 

phasing it is difficult to estimate negative sequence current and even more difficult if loss 

of phase occurs while running [5]. 

The history of fault monitoring and fault isolation started with the use of electromechanical 

relays to protect the motor against faults [6]. However these relays are slow in operation, 

consume significant power and require periodic maintenance due to mechanical parts 

involved. The traditional relays based on electromechanical and solid state relays are 

mostly replaced by microprocessor based relays. Modern numerical relays run on 

background software. Nowadays fast and sophisticated microprocessors, microcontrollers, 
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and digital signals processors availability to compact, faster, more accurate, flexible and 

reliable protective relays, make them cost effective as compared to the conventional ones. 

In numeric relays, the analog current and voltage signals monitored through current 

transformers (CTs) and/or voltage transformers (VTs) are conditioned, sampled at 

specified instants of time and converted to digital form for numerical manipulation, display 

and recording. The outputs of the analog pre-processor digitalized using A/D converters. 

The analog preprocessing and analog interface constitute the data acquisition system. 

Numerical relays process the data numerically using a relaying algorithm to calculate the 

fault discriminate and make trip decisions [7]. 

The current development of computer software based on intelligent systems components 

leads attention of relay engineers to use them in the diagnosis of faults in power system 

components such as induction motors. Recently soft computing techniques are used in this 

relay logic block [8]. 

Analog

Pre-rocessing

A/D

Converter

Relay

Algorithim

Relay 

Logic

Input

Voltage and 

currents Output

Digital Processor

Trip 

Command
 

FIGURE 1.1 

Block Diagram of Digital Relay Scheme [8] 

 

Artificial Neural networks (ANNs) and fuzzy logic systems are parameterised 

computational nonlinear algorithms for numerical processing of data.  The acquired 

knowledge is stored in internal parameters. Neural and fuzzy though different technologies 

can be used to accomplish the specification of mathematical relationships among numerous 

variables in complex problem, performing with some degree of impression [9]. Others 

include recently emerged different technologies like thermal measurements, chemical 

analysis, and axial flux. Intelligent numerical relays using artificial intelligence soft 

computing techniques such as ANNs and fuzzy logic systems are presently under active 

research and development stage. This work presents mainly ANN and Fuzzy Logic based 

three phase induction motor external faults identification. 
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Automated fault diagnostics and condition monitoring are important parts of most of the 

world‟s industrial processes. It is difficult to develop an analytical model that adequately 

describes induction motor performance in its all operation points with any power source in 

case of induction motor fault identification. If the expert knowledge of process is available 

a simple signal-based diagnostics can be adopted with knowledge-based models. It is 

difficult for a human expert to distinguish fault from the normal operation. Multiple 

information sources may need for accurate decision. Thus, the data-based models are the 

most interesting approach for the induction motor diagnostics [10]. In this presented work, 

the fault identification system is built using RMS features retrieved from the voltage and 

current signals and decision making part relies on data-based (pattern) classification model. 

 

 

FIGURE 1.2 

Basic Pattern Recognition System 

Classification establishes (or tries to find ) the structure in data, whereas pattern 

recognition attempts to take new data and assign them to one of the classes defined in the 

classification process [11]. Pattern recognition can be defined as a process of identifying 

structure in data by comparisons to known structure; the known structure is developed 

through methods of classification [12]. Classification and pattern recognition are general 

names for data-based algorithms that classify things based on multiple numerical 

measurements i.e. features. The classifiers can be trained to represent direct relationship 

between measurement data of the system and certain fault conditions.  During the last 
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years ANN based models like Multilayer Perceptron Neural Network (MLPNN) and 

Radial basis function neural networks have been a popular research subject and also their 

application in data based model widely studied. With ANN models it is possible to 

estimate a nonlinear function without requiring a mathematical description of how the 

output functionally depends on the input, neural networks (NNs) learn from examples. The 

most commonly mentioned advantages of ANN are their ability to model any nonlinear 

system, the ability to learn, highly parallel structure and the ability to deal with inconsistent 

data. Application of a NN in the decision making part of the fault diagnostics system is 

also called NN based fault classification or pattern recognition [13]. Developments in 

diagnosis systems have led to the consideration of radically different diagnosis strategies 

by making extensive use of artificial intelligence (AI) techniques. They have numerous 

advantages over conventional diagnosis techniques. They could give improved 

performance of fault identification if properly tuned. 

ANN found good potential in different applications like fault diagnosis, pattern 

recognition, forecasting, systems dynamic modeling, robotic control etc. Neural Networks 

are robust to input and system noise, have learning capabilities and can perform in real 

time. A large number of input variables can be simultaneously fed to a multi-input neural 

network. An ANN with its excellent pattern recognition capabilities can be effectively used 

for faults identification of an induction motor. ANN design does not require a complete 

mathematical model of the induction motor. Moreover once designed the internal structure 

of ANN can be easily changed, if modifications or additions need to be made. 

In presented work, three-layer MLPNNs and Probabilistic neural networks (PNNs) are 

evaluated for external fault diagnosis of induction motor. ANN with single hidden layer is 

capable of approximate any function regardless of its complexity. Presently there is no 

satisfactory method to define how many neurons should be used in hidden layers and 

usually found by trial and error method. Large number of neurons and layers may cause 

overfitting and may cause decrease the generalization ability. Many researchers suggested 

ANN in classification but less have discussed about generalized ANN. There must be 

trade-off between learning and generalization in classification. Standard Gradient Decent 

(GD) algorithm is too slow for practical problems. Levenberg-Marquardt (LM) is 

algorithm is the blend of GD and Newton technique. It is much faster and efficient than 

gradient descent [14]. Present study has attempted to find best generalized and well trained  
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MLPNN configuration using LM backpropagation (BP) optimization for the induction 

motor external faults detection and classification. PNN belongs to family of radial basis 

function NN which due to their robustness widely used in pattern classification problems. 

This study has also used PNN for external faults identification and evaluates best 

generalized PNN configuration.  

The interpretation of the fault conditions is a fuzzy concept using rigorous mathematical 

formulations in parameter estimation approach is generally impractical and inaccurate. 

Engineers prefer the accurate fault detection as well as the heuristic knowledge behind the 

faults diagnosis. We have used subtractive clustering based Sugeno fuzzy inference system 

(SC_FIS) for the external fault identification. It is not feasible to make direct rules using 

expert knowledge or by observing data sets for induction motor external faults 

identification for varying load and supply voltage. Clustering is a very effective technique 

to identify natural groupings in data and in this case allows to group fault patterns into 

broad categories. Subtractive clustering which does the clustering without prior 

information about the number of clusters and initial guess of the cluster centers. In 

subtractive clustering based FIS, combination of subtractive cluster estimation method and 

a linear least-squares estimation procedure provides a fast and robust algorithm for 

identifying fuzzy models from numerical data without involving any nonlinear 

optimization [15]. Performance of adaptive neuro-fuzzy system (ANFIS) is also evaluated 

for external faults identification. In literature survey related with application of clustering 

based Sugeno fuzzy systems in fault diagnosis or classification tasks, it is observed that the 

cluster radius of subtractive clustering is assumed and the FIS is used for diagnosis or 

classification. Present study attempted to find best generalized cluster radius Sugeno fuzzy 

and adaptive neurofuzzy configuration for external faults identification of induction motor 

for practical data sets. 

In addition, the external faults identification performance of neural nets and subtractive 

clustering based FIS approach is also compared with widely used probabilistic Naïve 

Bayes Classifier (NBC) and well-known Linear Discriminant Analysis (LDA) classifier 

with respect to statistical parameters like total classification accuracy, sensitivity, 

specificity, precession and F-measure to find its effectiveness for the problem.



Definition of the Problem 
 

7 
 

1.2 Definition of the Problem 

This thesis uses soft commuting techniques ANN and fuzzy logic for the identification of 

external faults generally experienced by induction motors alongwith normal conditions. 

This thesis evaluates the potential of ANN and fuzzy logic as relaying logic in induction 

motor external faults diagnosis. The ANN and fuzzy based methods used are tested with 

real time data sets obtained using 3 HP three phase induction motor. This study also 

compares the performance of ANN based and fuzzy based classifiers, alognwith 

probabilistic NBC and well-known statistical LDA classifier using statistical measures like 

classification accuracy, sensitivity, specificity, precision and overall F-measure. 

1.3 Objectives and Scope of the Study 

 To study induction motor external faults (OL, OV, UV, SP and VUB) and soft 

computing techniques like MLPNN, Subtractive clustering based Sugeno fuzzy 

inference systems (SC_FIS and ANFIS) and PNN.  

 Statistical measures study for multiclass classification performance comparison 

that includes classification accuracy, sensitivity, specificity, precision and F-

measure.  

 To develop induction motor external faults simulation in Matlab/Simulink 

environment. Plotting and visualization of data sets obtained through simulation. 

External faults classification using LDA and MLPNN based on simulation data sets. 

 To obtain real time data sets of three phase RMS current and RMS voltage values 

using experimentation and external faults identification using MLPNN, PNN and 

Sugeno FISs. 

 To obtain best generalized configuration for MLPNN, PNN and Sugeno FISs.  

 To compare the performance of ANN and fuzzy classification techniques including 

conventional well known stastical LDA and Naive bayes with respect to different 

stastical measures using practically obtained data sets. 

1.4 Significance of the Study 

Induction motors are the most common electrical machines, because of relatively low 

manufacturing cost and the ease of control. As indicated before, accurate identification of 

faults and protecting them is an important aspect to reduce financial losses. Currently AI 

based fault diagnosis is widely studied and proposed by researchers for power systems and 
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its components. This study evaluates the potential of ANN and fuzzy based techniques as 

relaying logic for induction motor external faults generalized and accurate identification.  

This study applied MLPNN for the accurate fault identification with fast LM BP algorithm 

using early stopping for generalization. Plotting of complex, overlapping, linearly non 

separable data sets is done class wise. Subtractive clustering based Sugeno fuzzy inference 

system is used for external faults identification and rules responsible for the five external 

faults and normal conditions are obtained. This study attempted to find best generalized 

well trained neural network (MLPNN and PNN) and fuzzy logic (Sugeno based FISs) 

configuration for external faults detection and classification. This study also attempted 

conventional LDA and probabilistic NBC for external faults identification alongwith 

neural network and fuzzy classifiers for statistical performance comparison.  

1.5 Outline of Thesis 

Chapter 2 presents literature survey mainly for induction motor faults identification studies 

using AI and some other approaches. Chapter 3 summarizes the different external faults 

appears to induction motor and discusses external faults simulation. OL, OV, UV, SP and 

VUB external faults are simulated alongwith normal conditions at different operating 

voltages and load torque in MATLAB/SIMULINK. Scatter plots are used to visualize the 

linearly non separable and complex data sets.  Chapter 4 discusses the neural network 

structure, advantages, generalization and LM algorithm. Different single layer MLPNN 

configurations are tested using growing hidden neuron phenomena and best generalized 

well trained configuration is found for external faults identification. Experimental setup 

details used for obtaining practical data sets for external faults are presented in chapter 5. 

MLPNN, SC_FIS, PNN, ANFIS, NBC and LDA are used for induction motor external 

faults identification using experimentally obtained real-time data sets and result are 

discussed in chapter 6. The classifiers are compared with total train and independent test 

classification accuracy for practical data sets in chapter 7. They are also compared using 

other stastical parameters like sensitivity, specificity, precession, F-measure alongwith for 

independent test and total train data sets in chapter 7. Finally, chapter 8 concludes the 

thesis. 
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CHAPTER - 2  

Literature Review 

2.1 Overview 

This review mainly covers some topics like induction motor external and internal faults 

identification, AI based fault identification, ANN generalization, NBC and LDA based 

fault identification, induction motor modelling and comparison of classifiers performance.  

All above topics are broadly classified and considered in three categories (1) ANN based 

approaches (2) Fuzzy logic based approaches (3) Hybrid and other approaches. 

2.2 ANN Based Approaches 

Accurate models of faulty machine and model based techniques are essentially required for 

achieving a good fault diagnosis, while soft computing approaches such as neural 

networks, fuzzy logic technique provide good analysis of a system even of in absence of 

accurate fault model [1].  

As a likely result of on-going computer technology development massive parallel 

processing and soft computing will significantly enhance traditional computation methods 

and natural consequence of this growth is the emergence of field of intelligent systems. It 

is a practical alternative for solving mathematically intractable and complex problems. The 

main subdivisions of the area are ANN and Fuzzy systems. The soft computing systems 

have very distinct features while operated with specialised hardware. The mathematical 

power of machine intelligence is commonly attributed to the neural like system 

architecture used and the fault tolerance arising from the massively interconnected 

structure. Another aspect of soft computing systems is that they use fuzzy/continuous 

levels instead of zero and one digital levels and in this way much more information is 

passed through the system. The third feature is survivability in the presence of faults, 

means they work correctly if they are partially damaged [2]. 
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The Noninvasive parameter estimation technique require mathematical model and 

elaborate understanding of system dynamics based on system parameters. The parameters 

are usually chosen to reflect the motor conditions and usually difficult to obtain [3]. On the 

other hand, ANN is also a noninvasive technique but unlike parameter estimation 

technique ANN can performs fault detection based on measurements and training without 

need of complex and rigorous mathematical models. ANN is proposed for fault 

identification and other power system applications [4] & is emerging technologies 

promising for future widespread industrial usage [5].  

Power system and electrical machines problem regarding classification or the encoding of 

an unspecified non-linear function are well-suited for ANN. ANNs can be especially useful 

for problems that need quick results, such as those in real time applications. Induction 

motor detection and classification are essential for relaying decision for alarming or 

tripping. The implementation of pattern recognizer for power system diagnosis has 

provided great advances in the protection field. An artificial neural network can be used as 

a pattern classifier for induction motor protection relay operation. The RMS magnitudes of 

three phase voltages and current signals of the transmission line are measured using current 

and voltage transformers and filters. The waveforms are sampled and digitized using 

analog to digital converters. After data acquisition, the signal is fed to pattern recognizer. 

The ANN (or fuzzy) recognizer module then verifies for the fault and generate a signal for 

alarm or tripping if it exists. The ANN (or fuzzy) module can be trained offline or online 

and trip decision is depend upon how ANN (or fuzzy) module is trained [6]. 

As in [7] maintenance as well as down time expenses can be reduced by appropriate fault 

detection schemes and proper monitoring of the incipient faults. Many of the conventional 

methods used to determine these faults are either very expensive, off-line, require the need 

of an expert, or impractical for small machines. ANN have been proposed and have 

demonstrated the capability of solving the motor monitoring and fault detection problem 

using an inexpensive, reliable, and noninvasive procedure. 

The neural network for induction motor fault diagnosis was first proposed by [8] for 

bearing and stator turn fault of single phase induction motor. Neural network was trained 

using controllable data sources (developed using a computer programme) for initial design
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and training of ANN. An overview of feedforward nets and the BP training algorithm and a 

general methodology for the design of feedforward artificial neural networks to perform 

motor fault detection was discussed in [3]. Feedfoward layered artificial neural network 

(ANN) structure and standard gradient decent BP algorithm was used for identification of 

external faults of induction motor by [4] [9] on simulation measurements. Simple statistical 

parameters such as the overall RMS value of a signal can give useful information; for 

example, the RMS value of the vibration velocity is a convenient measure of the overall 

vibration severity. The RMS value of the stator current provides a rough indication of the 

motor loading in similar way [10] [11] [4]. Three phase RMS currents and voltages of the 

induction motor were used as input feature vector in [4] and angular speed was also 

considered in [9]. PC based monitoring and external fault detection scheme for 3 phase 

induction motor using ANN was presented in [12]. Generalization of ANN, finding 

optimal configuration and statistical parameters for classification issues are not addressed 

in [4] [9]. We have evaluated the best generalized and well trained configuration for 

MLPNN for induction motor external faults identification using statistical parameters 

comparison. Early stopping is widely used generalization technique because it is simple to 

understand and implement and reported superior to regularization in many cases [13] 

 

An algorithm was proposed and experimentally validated in [14] for discrimination of 

unbalance supply voltage and phase losses fault using neural network. Authors used ratio 

of third harmonic to fundamental fast Fourier transform magnitude components of line 

currents and voltages at different load levels in their approach. In [15], ANN was used for 

detecting voltage unbalance faults for traction motor irrespective of the load and fault 

percentages. Stator current Park‟s vector approach was used by [16] as input to train and 

test ANN for classifying stator open phase and voltage unbalance case.  

 

In [17] stator interturn, bearing and rotor bar fault protection scheme was presented using 

principle components extracted from three phase RMS currents as input error vector for 

ANN. MLPNN based relaying scheme was presented in [18] for classifying and locating 

faults in TSCS transmission lines using three phase voltage and currents as input to 

MLPNN using EMTP-ATP simulation. In [19], two kinds of neural networks MLPNN 

with BP algorithm and self-organizing map (SOM) were compared for internal faults 

diagnosis using current and vibration signals. They found ANN diagnoses faults accurately 



Ch. 2 Literature Review 
 
 

14 
 

with variable load and speeds. 

Different kernel functions with different scaling range were applied to train SVM in [20] 

for identifying external faults in induction motor. The choice of suitable kernel for the 

given application, speed, size, and optimal design for multiclass classification are the 

challenges that limits the use of SVM for multiclass classification. 

Dr. D.F. Specht in [21] proposed PNN which is feedforward neural network developed 

from radial basis function model. PNN is widely used in classification and pattern 

recognition problems. PNN follows an approach of Bayesian classifiers and use Parzen 

estimators which were developed to construct probability density functions [22] and has 

the distinct features from other networks in learning like no learning process are required, 

no need of initial weight setting is required, and no relationship between learning process 

and recalling processes. It has advantages like training of PNN is much simpler and 

instantaneous that of MLPNN, can be used in real time, network begin to generalize once 

one pattern representing each category has been observed and improve with additional 

patterns, decision surface can be made simple or complex by choosing appropriate 

smoothing parameter, and erroneous samples are tolerated [21]. 

Radial basis function was utilized to train ANN for the detection of bearing and stator 

interturn fault in [23]. Instantaneous current and angular velocity depending upon rotor 

speed were utilized in their approach. In [24], PNN was used to recognize power 

disturbance produced with Labview software using discrete wavelet transform (DWT).  A 

performance comparative study is presented of three types of neural networks MLPNN, 

RBF and PNN for induction motor bearing fault detection using GA for section of features 

[25]. Induction machine drive speed sensor and current sensor faults diagnosis is presented 

in [26] using PNN and KNN algorithm alongwith PCA for feature extraction using 

MATLAB simulation model. 

Matlab/Simulink simulated faults and radial basis function neural network was used in [27] 

for detection and classification of mainly different voltage unbalance external fault 

conditions. Instantaneous values of three phase voltages and currents were used and 

authors demonstrated ANN classifies the faults correctly. The radial basis function spread 

is selected 1 for generalization. However the spread is not selected with any comparison of 

statistical parameters like classification accuracy for different spread of radial basis 

function neural network. We have evaluated the best spread for best generalized PNN
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configuration for external faults identification using test classification accuracy and three 

phase RMS voltages and currents as input patterns. 

2.3 Fuzzy Logic Based Approaches 

ANNs do not provide heuristic interpretation of the solution due to its numerically oriented 

structures.  Engineers prefer the accurate fault detection as well as the heuristic knowledge 

behind the fault detection process. Fuzzy logic is a technology that can easily provide 

heuristic reasoning while being difficult to provide exact solutions [7]. 

Ref. [28] discussed about practical utilisation of the fuzzy logic based protection device 

scheme.   It contains mainly three blocks. First is fuzzification where real input values are 

fuzzified. Second is fuzzy reasoning block where the fuzzy signals are processed and after 

comparison with fuzzy settings some fuzzy decision signal are generated. The third is 

defuzzification where the fuzzy outputs are converted to crisp numbers real output or 

decision signal. It is common that most of the relay decisions in protective device are of 

discrete type (0-1).The relay output generated is either for tripping/alarm of showing 

healthy state. There is no intermediate case. FL is multi-valued. It deals with degree of 

membership and degrees of truth. 

Fuzzy logic allow for a gradual transition between true and false. Decision making with FL 

can be compared to classification of the object to one of two or more classes where the 

border between them is not sharp, but is specified with some fuzziness. An element in such 

cases is classified as belonging with some degree between zero and unity to given set. 

When the degree of membership is high the fuzzy final decision can be made.  

Following important features make fuzzy a promising alternative for protection and control 

application: ability of processing uncertain, inaccurate or corrupt data, possibility of 

expressing non sharp relationships and rules in close to natural language way, easy 

interpretation of internal signal of fuzzy system, improvement of efficiency and selectivity 

in decision making because of fuzzy settings and decision characteristics [28]. 

Fuzzy logic (FL) Mamdani approach was used to diagnose stator open condition and stator 

voltage unbalance of induction motor by [29] using compositional rule of fuzzy inference 

and stator current amplitude as input linguistic variables. FL approach was used to 

diagnose stator turn fault and open phase condition by [30] and to diagnose overload, 
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voltage unbalance, undervoltage and single phase to ground by [31] using induction motor 

mathematical modelling. Three phase RMS stator currents were used as input variables in 

[30] and in addition speed and leakage current were also considered as input variables in 

[31]. They constructed rules for faults detection based on the observation of data obtained 

through simulation.  

FL was utilized in [32] for extracting heuristics underlying stator fault diagnosis using 

stator current concordia pattern based fuzzy decision system. FISs are widely used for 

processes simulation and control which can be designed from expert knowledge or data 

sets. But, FIS based on only expert knowledge may suffer from inaccuracy whereas the 

fuzzy system inferred from data sets for complex systems is more accurate [33]. 

The main role of the relaying principle is detecting and classifying the faults based on 

input samples. It is not feasible to make direct rules using expert knowledge or by 

observing data sets for induction motor external faults identification for varying load and 

supply voltage. Clustering is a very effective technique to identify natural groupings in 

data and in this case allows to group fault patterns into broad categories. In [34], k means, 

fuzzy k means and subtractive clustering techniques were used alongwith Mamdani and 

Sugeno FIS for standard IRIS flower identification and Mackey-Glass time series case. 

Authors concluded that subtractive clustering technique in conjunction with FIS methods 

in all sample tests showed a better performance than any other technique. Subtractive 

clustering which does the clustering without prior information about the number of clusters 

and initial guess of the cluster centers.  Combination of subtractive cluster estimation 

method and a linear least-squares estimation procedure provides a fast and robust 

algorithm for identifying fuzzy models from numerical data without involving any 

nonlinear optimization [35]. 

2.4 Hybrid and Other Approaches 

Methodology behind a novel hybrid neurofuzzy system which merges the neural network 

and fuzzy logic technologies to solve fault detection problems and training procedure for 

neurofuzzy fault detection system is discussed for single phase induction motor bearing 

and stator turn fault detection in [7]. In [36] trained neurofuzzy fault detector provide 

accurate fault detector performance; also provide the heuristic reasoning behind the fault 

detection process and the actual motor fault conditions through the fuzzy rules. Expert 
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knowledge was extracted using neural fuzzy fault detection in [36] for bearing and stator 

turn fault.  Stator winding faults and voltage unbalance faults are addressed in [37] and 

authors used adaptive neurofuzzy inference system (ANFIS) to accurately detect both 

conditions. MCSA widely used for internal faults diagnosis in literature. This technique 

depends upon locating faults according to the position of specific harmonic components in 

stator current spectrum like broken rotor bars, air-gap eccentricity, bearing fault, faults in 

stator windings, etc. Signal processing techniques are applied to the measured sensor 

signals in order to generate features or parameters (e.g. amplitudes of frequency 

components associated with faults) which are sensitive to the presence or absence of 

specific faults. In [38], two approaches based on discrete wavelet transform were utilized 

for the induction motor fault detection wherein first fault detection criteria is the 

comparison between threshold determined experientially during healthy condition of motor 

and DWT coefficients of fault currents using selected mother wavelet „db3‟ at the sixth 

level of resolution were utilized and second based on comparison of modulus maxima of 

the DWT coefficients. Wavelet Packet Transform based protection system was developed 

in [39] coefficients of the Wavelet Packet Transform line currents compared 

experimentally decided threshold for detecting and diagnosing various disturbance single 

phasing, phase to earth and short circuit faults occurring in induction motor. Using high 

resolution spectral analysis of stator current spectrum through experiment the voltage 

unbalance and open phase external fault condition was identified in [40]. 

In [41], detection and diagnosis of rolling element bearing defects with different severity 

levels were discussed using vibration signals based on classification techniques. Authors 

used two stastical classifier LDA & QDA and two types of neural networks RBF and MLP 

for classification accuracy comparison.  In [42], performance of Bayes net and Naïve 

Bayes classifier (NBC) were compared for helical gear box fault and Naïve Bayes based 

practical system was demonstrated more efficient with lesser features. NBC detection 

system is proposed in [43] to identify temporary short circuit occurrence in induction 

motor stator winding using wavelet decomposition of current signal and NBC performance 

also compared with LDA using confusion matrix. Protection scheme for incipient faults 

using microcontroller was demonstrated in [44].  

Authors in [45] presented MATLAB/Simulink model technique for induction motor tests 

which also helpful for evaluate steady state characteristic of motors. Induction machine 

model have been simulated in [46] [47] [48] for its behaviour analysis in Matlab/Simulink 
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using symmetrical I.M d-q model. As in [46] dynamic simulation of small induction motor 

based on mathematical modelling is one of the key steps in the validation of the design 

process of motor drive system. D-Q model provide guidelines dynamic for simulation of 

induction motor, which can also applied for some faults data generation. “Ref. [48]” shows 

the results of studies under acceleration, variable load and open phase using this model.  
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CHAPTER - 3  

Induction Motor External Faults and its 

Simulation 

3.1 Induction Motor 

Induction motors are complex electromechanical devices widely used for conversion of 

power from electrical to mechanical form in various industrial applications because they 

are robust, controlled and most suitable for many applications like pumps, fans, 

compressors, machine tools etc. The focus of this study is mainly related with LV/MV 

small and medium size squirrel cage induction motors faults identification.  

 

3.2 Induction Motor External Faults  

3.2.1 Overload  

As the mechanical load on induction motor increases the motor begins to draw high current 

and speed decrease. Below the normal rated current heat dissipation is more than the heat 

produced and vice versa above normal rated current. After certain amount of load heat 

generation rate is higher than heat dissipation rate than the insulation is threatened.  

Overload protection is always applied to motors to protect them against overheating. The 

National Electric Code requires that an overload protective device be used in each phase of 

induction motor unless protected by other means as because single phasing in the primary 

of a delta-wye transformer that supplies motor will produce three phase motor currents in a 

2:1:1 relationship. If the two units of current appeared in the phase with no overlaod device 

the motor would be unprotected [1]. 

The overload protection can also divide in two stages, alarming and tripping. In case of 

pre-warning alarm (for example 90 % of full load) operator get some time to find out 
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possible source of overload and to resolve the cause. If the overload becomes higher (for 

example greater than 10-15 %) than tripping is required [2]. 

The limitation of this scheme that ambient temperature and cooling effect will not be 

considered on current base fault identification so soft computing based overload protection 

can be used for prewarning. 

3.2.2 Overvoltage 

Induction motor is designed to withstand overvoltage upto +10% as general voltage design 

motor manufacture specification. When voltage increases beyond it motor overheat 

because of increase in core losses. Current draw is only controlled by the load and at rated 

current and 10% overvoltage the motor will be overloaded by approximately 10%. The 

core loss is 20 to 30% greater than normal and could cause the machine to overheat. 

3.2.3. Undervoltage 

As the voltage across motor reduces slip increases, motor speed drops and current 

increases. This is because the power to be delivered remains constant and voltage is 

reduced from normal rated voltage. The increase of current can harm the insulation of the 

motor windings.  

 When the voltage is reduced of normal the developed torque moves to lower and in order 

to develop the torque to drive the load motor slow down (slip increase) and draws more 

current from supply. The current changes drastically as voltage reduces below 75 to 80% 

of rated voltage.   In some cases, a large drop in voltage may cause the motor to stall also 

[3]. 

3.2.4 Single Phasing  

Single phasing is the worst case of voltage unbalance and can be happened because of 

open winding in motor or any open circuit in any phase anywhere between the secondary 

of transformer and the motor or one pole of circuit breaker open or opening of fuse [4] [5]. 

The single phasing causes unbalanced currents to flow and the negative sequence 

component of these unbalanced current causes the rotor to overheat. The negative sequence 

current increases the rotor copper losses also. It is the worst case of voltage unbalance. 

Negative sequence currents generated will be approximately six times the negative 
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sequence voltage. Thus effect of increase negative sequence current is 6 times the effect of 

similar increase in positive sequence current due to thermal overload [6]. 

 

3.2.5 Voltage Unbalance 

 Unbalanced supply voltage causes negative sequence currents to circulate in the motor, 

which increases the stator and rotor heating. The main causes of voltage unbalance 

condition are open delta transformers, lack of adequate transpositions in supply lines, 

single phase fuse failure, pole discrepancy of a circuit breaker, unbalanced loading, 

unequal tap settings, high resistance connections, Shunted single phase load, unbalanced 

primary voltage and defective transformer [7] [4]. Voltage unbalance can also be causes by 

unsymmetrical fault within induction motor or such a fault on the feeder feeding the 

induction motor from supply side. Presence of small voltage unbalance results in large 

current unbalance by a factor of six times and negative sequence phase components cause 

increased stator and rotor copper loss, eddy current loss, overheating , reduction in output 

torque and efficiency. Unbalance also causes mechanical problem like vibration.  So 

Induction motor voltage unbalance monitoring is required to prevent or protect motor from 

failure.  

The negative-sequence current usually produces very little torque, especially if the 

unbalance is small, which implies a small negative-sequence current. Its major effect is to 

increase the losses, primarily the stator I
2
R losses. The winding carrying the largest current 

will overheat, but in time the excess heat is distributed throughout the machine more or 

less uniformly. This may cause the machine to be derated, with the derating being highly 

dependent on the ratio of sequence impedances given by equation of ratio of starting to 

running current [3].  

 

NEMA standard suggest no derating required up to 1% unbalance, from 1 to 5% motor 

derating require and above 5% operation is not recommended [8] [9] [10]. Standard motor 

are capable of operating under condition of supply voltage unbalance of 1% for long 

period. Voltage unbalance more than 1% is considered voltage unbalance condition in 

simulation and experimental study in this thesis and less than 1% voltage unbalance is 

considered as normal condition. All types of voltage unbalance like single phase and two 

phase undervoltage and overvoltage unbalance, three phase undervoltage and overvoltage 
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unbalance and one phase, two phase angle displacement are considered in the simulation 

data sets. 

TABLE 3.1 

Relative Insulation Life for Different % Voltage Unbalances for Induction Motor  

(for 100% Motor Loading and 1 Service Factor) [11] 

 

 

 

Percentage line unbalance considered based on NEMA definition   

% Line Unbalance Voltage Ratio = (Maximum Voltage from average line voltage 

magnitude /Average Voltage) x 100% ……………………………………………… (3.1) 

The magnitude of the NEMA unbalanced voltage in percentage and negative sequence 

voltage in percentage is almost equivalent for all practical purpose [8]. 

3.3 Induction Motor External Faults Simulation  

A three phase induction motor external faults simulation is prepared in Matlab/Simulink 

environment [12] with varying operating voltages and load. OL, OV, UV, SP (for each 

phase), VUB and normal conditions are simulated to obtain three phase RMS line voltages 

and RMS line current values. The fault simulation is prepared using 3 phase, 50Hz, 4 

kW/5.4 HP, 400 V, 1430 rpm, star connected induction motor. Induction motor block in 

Matlab/Simulink is based on arbitrary reference frame theory and contains highly 

nonlinear modelling equations. Induction motor is used in stationary reference frame. Data 

sets are obtained using ode 23tb stiff solver in simulation. The three phase steady state 

RMS voltages and currents values are obtained as data sets (patterns) and used as input 

feature vectors for training, for example in MLPNN based fault identification algorithm for 

MLPNN training. We have prepared 174 data sets for training and 46 data sets for 

Voltage  

Unbalance (%) 

Derating  

Required 

0 1 

1 0.9 

2 0.64 

3 0.37 

4 0.17 
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independent testing. The training data sets and testing data sets are shown in Appendix A 

and Appendix B respectively. The number of train and test data sets patterns used for six 

output conditions are shown in Table 3.2. Subsection 3.3.1 to 3.3.6 discusses details of 

how different output conditions data sets are obtained and also shows example of how the 

independent test data sets (patterns) are obtained for output conditions. Three phase RMS 

voltages and current values obtained using simulation at 1.2s and used as test vector. Table 

3.3 shows some example of independent test patterns. 

TABLE 3.2 

Number of Patterns for simulation Train and Independent Test Data Sets   

 

 

 

 

 

Some of the test (unseen) patterns used for MLPNN testing (in chapter 4) obtained for 

different external fault conditions alongwith normal conditions are shown in Table 3.3. 

TABLE 3.3 

Examples of Test Inputs for Simulation Data Sets  

Sr. 

No. 

Output Inputs 

VRY 

(In1) 

VYB 

(In2) 

VBR 

(In 3) 

IR 

(In 4) 

IY 

(In 5) 

IB 

(In 6) 

1 N 405.1 405.4 405.6 7.74 7.72 7.73 

2 N( 92.5% UV 

within normal limit) 

369.7 369.9 370 8.16 8.16 8.16 

3 N (VUB 0.52%) 397.7 394.4 396.2 8.08 7.68 7.57 

4 OL 399.7 400 400 10.33 10.33 10.33 

5 OV 443.2 443.4 443.5 7.44 7.45 7.44 

6 UV 347.6 347.8 348 8.55 8.54 8.54 

7 SP(R phase) 300.2 412.7 374.6 0 16.26 16.26 

8 SP(y phase) 370.6 265.7 400.4 20.1 0 20.1 

9 SP(B phase) 384.3 352.4 263.6 17.6 17.6 0 

10 VUB (2 phase UV  ) 365.7 390.0 355.8 6.819 11.62 8.294 

11 VUB (3 phase OV) 427.1 438.4 432.5 6.51 7.68 8.09 

 

Sr. No. Condition  Train Data Independent Test Data 

1 Normal Output (N) 31 6 

2 Overload (OL) 19 6 

3 Overvoltage(OV) 30 6 

4 Undervoltage(UV) 20 5 

5 Single Phasing (SP) 25 15 

6 Voltage Unbalance (VUB) 49 8 
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3.3.1 Normal Condition 

Induction motor normal operation data sets are obtained with rated load torque and also 

with some other normal variant loading (60-105% of full load) condition and different 

normal balanced voltage of the range ±10% of rated voltage, with which motor mostly 

operates in industry. Fig. 3.1 (a) shows the three phase voltage and currents and Fig. 3.1(b) 

shows three phase RMS voltages and currents for normal condition Sr. No. 1 of Table 3.3 

 

(a) 

 

(b) 

  FIGURE 3.1 

Normal Condition (Sr. No.1 of Table 3.3) 

 (a) Three Phase Voltages and Currents (b) Three Phase RMS Voltages and Currents   
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Fig. 3.2 (a) shows the three phase voltage and currents and Fig. 3.2 (b) shows three phase 

RMS voltages and currents for normal condition (with 92.5% rated normal voltages ) Sr. 

No. 2 of Table 3.3.  

 

(a) 

 

(b) 

FIGURE 3.2 

Normal Condition (Sr. No. 2 of Table 3.3) (a) Three Phase Voltages and Currents for 

(b) Three Phase RMS Voltages and Currents 
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Fig. 3 (a) shows the three phase voltages and currents and Fig. 3(b) shows three phase 

RMS voltages and currents for normal condition with 0.52% VUB in supply voltages. 

0.52% VUB initiated at 1.14s. 

 

 (a) 

 

(b) 

FIGURE 3.3 

 Normal Condition (Sr. No. 3 of Table 3.3) (a) Three Phase Voltages and Currents for 

(b) Three Phase RMS Voltages and Currents 
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3.3.2 Overload Condition 

Loading condition above 105% to 150% of normal load is considered as motor overload 

condition. Fig. 3.4 (a) shows the three phase voltages and currents and Fig. 3.4 (b) shows 

three phase RMS voltages and currents for OL condition. 124% OL of rated current 

initiated at 1.14s. 

 

(a) 

 

(b) 

FIGURE 3.4 

OL Condition (Sr. No 4 of Table 3.3) (a) Three Phase Voltages and Currents for (b) 

Three Phase RMS Voltages and Currents  
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3.3.3 Overvoltage Condition 

The operating voltages more than 10% rated operating voltages are considered as 

overvoltage condition in simulation. Fig. 3.5 (a) shows the three phase voltages and 

currents and Fig. 3.5 (b) shows three phase RMS voltages and currents for OV condition. 

110.8% OV of rated voltage initiated at 1.12s. 

 

 

(a) 

 

(b) 

FIGURE 3.5 

OV Condition (Sr. No.5 of Table 3.3) (a) Three Phase Voltages and Currents for (b) 

Three Phase RMS Voltages and Currents  
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3.3.4 Undervoltage Condition 

The operating voltages less than 10% rated operating voltages are considered undervoltage 

condition in simulation. 

Fig. 3.6 (a) shows the three phase voltages and currents and Fig. 3.6 (b) shows three phase 

RMS voltages and currents for UV condition. 87% UV of rated voltage initiated at 1.14s. 

 

(a) 

 

(b) 

FIGURE 3.6 

UV Condition (Sr. No. 6 of Table 3.3) (a) Three Phase Voltages and Currents (b) 

Three Phase RMS Voltages and Currents  
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3.3.5 Single Phasing Condition 

Opening of any of three phases is considered in single phasing condition. Fig. 3.7 (a) 

shows the three phase voltages and currents and Fig. 3.7 (b) shows three phase RMS 

voltages and currents for SP condition. SP in B phase initiated at 1.16s. 

 

(a) 

 

(b) 

FIGURE 3.7 

SP Condition in B phase (Sr. No. 9 of Table 3.3 at 1.16s) (a) Three Phase Voltages and 

Currents (b) Three Phase RMS Voltages and Currents  
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3.3.6 Voltage Unbalance Condition 

Standard motor are capable of operating under condition of supply voltage unbalance of 

1% for long period. Derating is requiring for voltage unbalance between 1 to 5% for safe 

operation which is generally not taken care in field. We have considered voltage unbalance 

more than 1% as fault which. All types of voltage unbalance like single phase and two 

phase undervoltage and overvoltage unbalance, three phase undervoltage and overvoltage 

unbalance and one phase, two phase angle displacement considered in the case. Fig. 3.8 (a) 

shows the three phase voltages and currents and Fig. 3.8 (b) shows three phase RMS 

voltages and currents for VUB condition. Two phase undervoltage VUB initiated at 1.13s. 

 

(a) 

 

(b) 

FIGURE 3.8  

 VUB Condition (Sr. No. 10 of Table 3.3) (a) Three Phase Voltages and Currents for 

(b) Three Phase RMS voltages and Currents 
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3.3.7 Scatter Plot Visualization of Simulation Data Sets 

Fig. 3.9 shows the scatter plot visualization for fault data sets patterns obtained using 

simulation. Plot displays input variable relations with respect to different fault class and 

found linearly nonseparable and overly complex.  

 

 

FIGURE 3.9 

Scatter Plot of Simulation Data Sets 

 

3.3.8 External Faults Identification With Linear Discriminant Analysis (LDA) and 

Discussions 

3.3.8.1 LDA  

Besides visualization of data sets complexity using scatter plot we have also tested with 

conventional and widely used LDA for classification results. Discriminant analysis 

approaches are well known statistical approaches and widely used in pattern recognition 

tasks. It can be easily extended to multiclass cases Via multiple discriminant analysis [13] 

[14]. LDA analysis can be used to study the difference between groups of objects (two or 

more) with respect to several variables simultaneously; for determining wheather 

meaningful differences exist between the groups [13].  
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The basic idea of LDA is to find a linear transformation that best discriminate among 

classes and the classification is then performed in the transformed space based on some 

metric such as Euclidean distance. 

 

 Two-Class LDA:  

Fisher first introduced LDA for two classes and his idea was to transform the multivariate 

observations X to univariate observations Y such that the Y‟s derived from two classes 

were separated as much as possible. For example, suppose a set of n numbers q-

dimensional samples X1,   , . . . , Xn (where X  = (Xi1,……,Xiq)) belonging to two 

different classes, namely    and    . For these two classes, the scatter matrices are given as 

 

Si ∑ (X-X̅i)(X-X̅i)
 

x ci  ……………………………………………………………….. (3.2) 

Where in (3.2), X̅i  
1

ni
 ∑ xx ci  .    is the number of samples in   . Hence the total intra-

class scatter matrix is given by 

 ̂
w
 S1+ S2 ∑ ∑ (X-X̅i)(X-X̅i)

 

x cii   …………………………………………………...(3.3) 

 

The inter-class scatter matrix is given by 

 

∑̂  ( ̅ - ̅ )( ̅ - ̅ )
 
………………………………………………………….………. (3.4) 

 

Fisher‟s criterion suggested the linear transformation Φ to maximize the ratio of the 

determinant of the inter-class scatter matrix of the projected samples to the intra-class 

scatter matrix of the projected samples: 

 

 (Φ) 
Φ  ∑ 

̂
 Φ

Φ  ∑ 
̂
 Φ

…………………………………………………………………...……...(3.5) 

 

If  ̂
w

 is non-singular, above (3.5) can be solved as a conventional eigenvalue problem and  

  is given by the eigenvectors of matrix  ̂
w

-1
  ̂

b
 [13]. 
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 Multi-Class LDA: 

If the numbers of classes are more than two, then a natural extension of Fisher linear 

discriminant possible using multiple discriminant analysis. As in two-class case, the 

projection is from high dimensional space to a low dimensional space and the 

transformation suggested still maximizes the ratio of intra-class scatter to the inter-class 

scatter. The maximization should be done among several competing classes unlike the two-

class case. Suppose that now there are p classes. The intra-class matrix is calculated similar 

to (3.3): 

 ̂
w
 S1+…+Sp ∑ ∑ (X-X̅i)x ci

p

i 1 (X-X̅i)
 
…………………………………………….. (3.6) 

 

Inter-class scatter matrix slightly differs in computation and is given by  

 

 ̂
b
 ∑ mi

p

i 1 (X̅i- X̅)(X̅i- X̅)
 
…………………………………………………………… (3.7) 

 

Where in (3.7),    is the number of training samples for each class,  X̅i is the mean for 

each class and   X̅ is the total mean vector given by  X̅ 
1

m
∑ miX̅i 
p

i 1  , Transformation   

can be obtained by solving generalized eigenvalue problem 

 ̂
b
     ̂

w
 ……………………………………………………………………….…. (3.8) 

   is known as eigenvalue. Once the transformation   is given, the classification is then 

performed in the transformed space based on some distance metric such as Euclidean 

distance 

d(X,Y) √∑ (Xi-Yi )
2

i   and cosine measure d(X,Y) 1- 
∑ XiYii

√∑(  )    √∑(   )  

  

  . Then upon arrival of the new instance Z, it is classified to argmink d(Z ,X̅k ),   where 

X̅k is the centroid of k-th class [13]. 

 

3.3.8.2 Classification Results Obtained Using LDA and Discussions 

We have used MATLAB classify function for linear discriminant analysis based fault 

diagnosis with own written codes. 



Induction Motor External Faults Simulation 
 

39 
 

The classification accuracy results obtained for total train (174) and (46) independent test 

data sets are obtained as follows. Total classification Accuracy is defined as the total 

number of correct decisions to total number of cases. 

Total train classification accuracy (with 174 total train data sets) = 70.11%  

Independent test classification error=0.261 (with independent 46 test data sets) =26.1% 

Independent test classification accuracy (1- classification error) = 73.9%. 

The programme is also tested with 10-fold cross validation by splitting total train data sets 

in 10-fold train and test data sets. 

CVMCR (misclassification test error with 10-fold cross validation) = 0.3448 = 34.48%, 

It is observed the classification error obtained with widely LDA is high for this complex 

and multi-class fault identification problem. 

 

We have used ANN in next chapter and shown results obtained for ANN. The three phase 

steady state RMS values of voltages and currents are obtained for normal and external 

faults condition which used as input patterns for MLPNN training. We have tested 

MLPNN with separate test patterns and also discussed results obtained in next chapter.  

The test pattern variables are mostly within ±7.5% of train pattern variables values for 

simulation and practical data sets. It is observed MLPNN can identify any unseen external 

faults with high classification accuracy. 

 

As single phasing is more severe fault among all these faults and requires early tripping we 

have taken RMS values after 2 cycles for simulation train data sets. Steadystate RMS 

values can also be taken for SP case. Present numerical protection for single phasing 

provides delay about 5 sec. External faults not demand instantaneous tripping and can 

protected with proper time delayed protection. The same phenomena can be possible with 

the use of ANN and Fuzzy with suitable and less time delay than present numerical 

protection. 

 

. 
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The limitation of this fault identification scheme is that it should be blocked during starting 

period. However as future scope this problem can be rectified by taking starting period 

input values for training for each condition. 
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CHAPTER - 4  

External Faults Detection and Classification Using 

MLPNN 

4.1 Artificial Neural Networks 

4.1.1 Introduction      

ANN functionally motivated by human brain represents a simplified model of biological 

nervous system. ANN is highly interconnected network and connected through number of 

processing elements. These processing elements are known as neurons. These neurons are 

connected though weighted links.  ANNs have ability to acquire knowledge through 

learning and make it available for use. ANN can acquire knowledge through various 

existing learning mechanisms. ANN architectures are classified into various types based on 

their learning mechanisms and other features. Some classes of NN refer to this learning 

process as training and the ability to solve problem using the acquired knowledge as 

inference [1]. ANN is trained with known examples of problem. Trained ANN can identify 

unknown instances of the problem.  

 

The NN are robust systems and fault tolerant. The NN possess the capabilities to 

generalize thus they can predict new outcomes from learnt patterns i.e.  past trends. They 

can recall full patterns from incomplete, noisy or partial patterns. The NN can process 

information in parallel at high speed and distributed manner. ANNs are widely used for the 

applications like classification, clustering, pattern recognition, vector quantization, 

function approximation, forecasting, control, optimization, pattern completion and search 

[2] [3]. 

 

Data classification is a basic issue in pattern recognition, data mining, and forecasting. The 

goal classification is to assign a new object to a class from a given set of predefined classes 

based on the attribute values or features of the object. Classification is based on some 

discovered model, which forms an important piece of knowledge about the 
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application domain. There has been wide range of methods for classification task and ANN 

is one of the popular and widely used techniques among them. In a classification task, the 

pattern which is to classify is typically fed into the networks as activation of a set of input 

units. This activation is then spread through the network via the connections, finally 

resulting in activation of the output units, which is interpreted as the classification result. 

There are a large number of different neural network architectures. One of the most 

popular neural network architectures used for classification is the MLP. The units are 

organized into different layers. The neural network is said to be feed-forward because the 

activation values propagate in one direction only, from the units in the input layer through 

a number of hidden layers, to end up in the output layer [4]. 

 

In the field of fault diagnosis, neural networks are frequently employed and about major 

publications utilizing a classification procedure for fault diagnosis, relied on neural 

networks. Since efficient tools for network training and implementation have become 

easily available, it is likely that neural networks are used in more than half of the 

applications today. They provide a means to achieve decent classification results with 

relatively moderate design effort.  

 

NN based fault diagnosis is basically a general purpose solution. Prior knowledge of motor 

diagnosis models is not required. Only the training data should be obtained in advance. The 

knowledge about the problem is distributed among artificial neurons and between the 

connection weights and biases and set them to a value such that ANN performs better at 

the applied input. Thus, the entire training process is a means of evaluating right 

combination of weights and biases for which ANN performs at its best. A good ANN 

architecture gives the best performance in the least number of layers and least number of 

neurons. At training stage, the feature vector is applied as input to neural network and 

network adjusts its variable parameter, the weights and biases, to capture the relationship 

between input pattern and outputs [3]. 

 

The inherent drawbacks of neural network learning such as over training and under 

training can be resolved by generalization and proper selection of hidden neurons.  

However, the short comings of neural networks based motor fault diagnosis is that 

qualitative and linguistic information from the operator cannot directly utilized or 
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embedded in neural networks structures and it is difficult to interpret the input and output 

mapping of a trained ANN into meaningful fault diagnosis rules [5]. 

4.1.2 Learning Methods  

Learning methods in NN can be broadly classified into three basic types: supervised, 

unsupervised and reinforced [2] [1].  Here supervised and unsupervised learning are 

discussed. 

 

4.1.2.1 Supervised Learning 

In this every input pattern that is used to train the network is associated with an output 

pattern, which is the target or the desired pattern. A teacher is assumed to be present during 

the learning process, when a comparison is made between the network‟s computed output 

and the correct expected output, to determine the error. The error can then be used to 

change network parameters, which result in an improvement in performance.  Perceptron 

learning rule, BP (generalized Widrow-Hoff learning or continuous Perceptron learning) 

rule, Widrow-Hoff learning rule, correlation and outstar learning rules are the examples of 

supervised learning of neural network.  

4.1.2.2 Unsupervised Learning 

In this learning, the target output is not presented to the network. It is as if there is no 

teacher to present the desired patterns hence the system learns of its own by discovering 

and adapting to structural features in input patterns. Hebbian learning rule, Winner-Take 

all learning rule are example of unsupervised learning. 

4.1.3 MLPNN 

The feedforward neural networks (FFNNs) allow only for one directional signal flow. 

Furthermore, most of FFNNs are organized in layers. Multilayer perceptron neural 

networks (MLPNNs) are widely used FFNNs in different kind of applications due to their 

fast operation, ease of implementation, and smaller training set requirements [6].  Based on 

universal approximation theorem one hidden layer is sufficient for a NN to approximate 

any continuous mapping from the patterns to the output patterns to an arbitrary degree of 

accuracy. Standard feedforward networks are universal function approximator and with 
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only a single hidden layer can approximate any continuous function on any compact set 

and any measurable function to any desired degree of accuracy [7] [8]
. 
The MLPNN can be 

used in cases where the shapes of the class boundary are complex and linearly not 

separable. Minimum amount of neurons and number of instances are necessary to program 

given task into MLPNN [9] [10]. There is no analytical method for determining the 

number of neurons in the hidden layer. Therefore it only found by trial and error [6] [11] 

[12]. 

 

There is no clear and exact rule due to complexity of the network mapping. Neurons 

depend on the function to be approximated and its degree of nonlinearity affects the size of 

network. Large number of neurons and layers may cause overfitting and may cause 

decrease the generalization ability. 

 

The data sets obtained from the induction motor fault simulation of RMS three phase 

voltages and line currents are used as concurrent input training vector to train the neural 

network. The input data matrix should be preprocessed for the efficient and better form of 

NN training. The goal of normalization is to ensure that the statistical distribution of values 

for each net input and output is roughly uniform. We have used MATLAB function 

MAPMINMAX to processes matrices by normalizing the minimum and maximum values 

of each row to ymin(-1) and ymax(+1) and given as, 

 

y  (y
max

-y
min
)* 

x-xmin

ymax- ymin  
 +  y

min
 ……………………………………………................(4.1) 

 

An example of single hidden layer neural network is shown in Fig. 1. This network consist 

input layer, hidden layer and output layer. The FFNN is also used for nonlinear 

transformation of a multidimensional input variable into another multidimensional variable 

in the output. In theory, any input-output mapping should be possible if neural network has 

enough neurons in hidden layers (size of output layer is set by the number of outputs 

required). Presently there is no satisfactory method to define how many neurons should be 

used in hidden layers and usually found by trial and error method. On the other side, 

networks with larger number of neurons lose their ability for generalization, and it is more 

likely that such network will try to map noise supplied to the input also. 
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FIGURE 4.1  

Single Hidden Layer MLPNN 

 

Each input of MLPNN is weighted with randomly initialized weights and bias. The sum of 

weighted inputs and the bias forms the input to transfer function. Tansig transfer function 

is utilized in hidden layer. The output ai of ith neuron of hidden layer can be given as 

 

a
i
 =  tansig (I.W. * p + b

i
)  ……………………………………………………………………………………..(4.2) 

Wherein (4.2) I.W is weight vector of different element of input vector p to i the hidden 

layer neuron and b
i 

is weight assigned to neuron. Tansig activation function is used in 

hidden and output layer. The output o
i
 of i

th
 neuron of output layer can be given as 

o
i
 =  tansig (L.W. * n  + b

i
)…………………………………………………………………………………………(4.3) 

Wherein (4.3) L.W. is weight vector of different element of hidden layer to i
th

 output layer 

neuron, n is output vector of hidden layer and b
i 
is weight assigned to the i

th
 output layer 

neuron. o
i 
is output of the i

th
 output neuron.  In our case, number of input layer neurons are 

6 same as number of input variables and output layer neurons are equal to 6 that of number 

of classes.  
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4.1.4 Levenberg-Marquardt Backpropagation Optimization 

Standard BP is a gradient descent algorithm, as is the Widrow-Hoff learning rule, in which 

the network weights are moved along the negative of the gradient of the performance 

function.  It works on 

xk+1  xk-  gk ……………………………………………………………………... ……(4.4) 

Wherein (4.4)    is vector of current weights,      is current gradient and   is learning rate. 

In batch mode training all the inputs are applied to the network and the gradients calculated 

at each training example are added together to determine the change in the weights and 

biases before the weights are updated in the direction of the negative gradient of   mean 

square error. Standard Gradient Decent (GD) algorithm is too slow for practical problems. 

As in [13] Levenberg proposed algorithm is the blend of GD and Newton technique and 

the weight update rule is 

          (H+ I)
-1g ……………………………………………………………. (4.5) 

Wherein (4.5) H  JTJ and g  JTe  

Where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to weight and  biases, g is the average error gradient, I is the identity matrix,   is 

weight damping factor, and H is approximation to the hessian (matrix of mixed partials) 

which is obtained by averaging outer products of the first order derivative (gradient).  

Steepest Decent type method used until the approach a minimum and gradual switch over 

to the quadratic approximation. The algorithm adjusts   according to wheather error 

increasing or decreasing. If error increases as a result of the update then retracts the step 

means reset the weights to previous values and increase   by set increasing factor and try 

for an update again. The step accepted if error decreases as result of update.  Marquardt 

improved this method by replacing the identity matrix (I) by diagonal of the Hessian with a 

view insight to use benefit of hessian when   is high, by scaling each component of the 

gradient according to the curvature, results in larger movement along the directions where 

the gradient is smaller so the classic error valley does not occur. The resulting update rule 

is 

xk+1  xk -(H+ diag[H])
-1g ……………………………………………………………. (4.6)
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For moderately sized models (few hundred parameters) LM is much faster than gradient 

descent [14]. We have used „trainlm‟ Matlab function for LM optimization [15]. 

 

4.1.5 Early Stopping Generalization 

NN learns during learning to approximate behaviour adaptively from training data while 

generalization is the ability to predict well beyond the training data. Overfitting in complex 

model such as NN can occurs when a model begins to memorize training data rather than 

learning to generalize from trend [16]. We have used early stopping to improve 

generalization of NN and to make it robust. 

The usual approach for evaluating the generalization performance of an ANN is to divide 

the available data into three subsets training, validation and testing [17]. The second subset 

is the validation set. In early stopping error computed for a validation set at the same time 

that the network is being trained with the training set. Early stopping is performed to avoid 

the case when the MSE might decrease in the training set but increases in the validation 

set. This happens when the network starts memorizing the training patterns. Thus network 

must be instructed to stop the training when the above situation occurs. When the 

validation error increases for a specified number of iterations the training is stopped, and 

the weights and biases at the minimum of the validation error are returned. Test subset is 

independent to check network generalization [15]  

4.2 Classification Results Obtained Using MLPNN for Simulation Data Sets 

The neural networks are designed to match an arbitrary function by reducing an 

appropriate error measure usually defines as sum of squares of the errors [18]. Neural 

networks of such types have been shown to be universal approximators and they can fit 

any function to an arbitrary accuracy if their structure is sufficiently large.  

As diagnosis tools they are trained with exactly the same target values as for instance the 

polynomial classifier which means that they also approximate the class conditional 

posterior probability. The classifier needs to map the relationship between computed or 

measured symptoms and the fault indicators with binary desired value. The classification 

methods usually compute a value between 0 and 1, an additional maximum operation is 

needed and that used to determine fault diagnosis result in induction motor 
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external faults classification methods. A MLPNN model with insufficient or excessive 

number of neurons in the hidden layer most likely cause the problems of bad generalization 

and overfitting. The determination of appropriate number of hidden layers is one of the 

most critical tasks in neural network design. As referred above, there is no analytical 

method for determining the number of neurons in the hidden layer and therefore it only 

found by trial and error. Several single hidden layer neural network configurations were 

tested with growing neurons to find the best generalized neural network configuration 

using trial and error method. For that, the training data sets are divided in 2 parts training 

and validation subsets.  Early stopping is used to stop the neural network training. ANN 

training is stopped when validation error is found increasing while training error 

decreasing for consecutive 6 epochs. The fault identification target output is shown in 

Table 4.1 for MLPNN training.  Validation subset classification accuracy, train subset 

classification accuracy, and validation error are considered and compared to find best 

generalized well trained ANN configuration. Each ANN configuration is tested atleast 20 

times with reinitialized weights and biases. All configurations are also tested with 

independent test data sets. The results of validation accuracy, validation error, train 

accuracy and also train error for different configuration are shown in Table 4.2. It is 

observed from Table 4.2  that the MLPNN structure 6-10-6 have highest validation subset, 

train subset, independent test classification accuracy and least validation subset error. The 

MLPNN structure 6-10-6 is considered as best generalized configuration. In single hidden 

layer MLPNN configurations the number of input layer neurons are selected 6 same as 

number of input variables and output neurons equal to six same as six output classes. 

 

TABLE 4.1 

Target Output  

Output 

Condition 

Target output 

VUB 1 0 0 0 0 0 

SP 0 1 0 0 0 0 

UV 0 0 1 0 0 0 

OV 0 0 0 1 0 0 

OL 0 0 0 0 1 0 

N 0 0 0 0 0 1 
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TABLE 4.2 

 MLPNN Configurations Validation Accuracy, Validation Error, Train Accuracy and 

Train Error With Different Hidden Neurons 

 

 

4.2.1 Results Obtained for Test Patterns of Table 3.3 Using Best Generalized MLPNN 

Configuration 

 

Some of the test patterns for different output conditions are shown in Table 3.3 of previous 

chapter. The best ANN configuration output is evaluated using programme in MATLAB 

environment and shown in Table 4.3 for the respective test input.  

 

Fig. 4.2 to Fig. 4.9  are the MLPNN outputs obtained through simulation after connecting 

best generalized MLPNN network configuration with simulation diagram for the test cases 

of Table 3.3. The MLPNN layer details used in simulation are shown in APPENDIX E. 

The MLPNN refresh rate is set at 0.1 second. In case of external faults identification using 

MLPNN, It is observed through simulation that ANN can detect all kind of faults occurs 1 

cycle before its refreshing rate. This fault identification can further convey to call for alarm 

or tripping. 

 

Hidden 

Neurons 

Validation 

Error 

Validation 

Subset 

Classification 

Accuracy 

Training 

Error 

Train Subset 

Classification 

Accuracy 

Independent 

Test  

Classification 

Accuracy 

5 0.0354 92.3 0.0115 95.4 97.8 

6 0.0288 92.3 0.00083 97.7 97.8 

7 0.0213 94.2 0.0089 97.1 95.7 

8 0.0202 94.2 0.0014 97.7 97.8 

9 0.0233 92.3 0.00029 97.7 95.7 

10 0.0087 96.2 0.0027 98.9 97.8 

11 0.0177 94.2 0.00597 98.3 97.8 

12 0.0238 92.3 0.00192 97.7 97.8 
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TABLE 4.3 

Output Results Obtained for Test Patterns of Table 3.3 using Best MLPNN 

Configuration 

Sr. No. of Test Pattern Mention 

in Table 3.3 

VUB SP UV OV OL N 

1 0.02 0 0 0 0 0.93 

2 0 0 0.03 0 0 0.91 

3 0.02 0 0 0 0 0.96 

4 0 0 0 0 1 0 

5 0 0 0 1 0 0.21 

6 0.01 0 0.89 0 0.02 0 

7 0 0.99 0 0 0 0 

8 0 1 0.08 0 0 0 

9 0 1 0.01 0 0 0 

10 1 0 0 0 0.08 0 

11 1 0 0 0 0 0 

 

 

 

 

FIGURE 4.2 

ANN Output Status for Normal Condition (Sr. No. 1 of Table 3.3) 
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FIGURE 4.3 

ANN Output Status for Normal Condition With 92% UV (Sr. No. 2 of Table 3.3) 

 

 

FIGURE 4.4 

ANN Output Status for Normal Condition With 0.52% VUB (Sr. No. 3 of Table 3.3) 
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FIGURE 4.5 

ANN Output Status for OL condition (Sr. No. 4 of Table 3.3) 

 

 

Figure 4.6  

ANN Output Status for (OV condition) Sr. No. 5 of Table 3.3 
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FIGURE 4.7   

ANN status for UV condition (Sr. No. 6 of Table 3.3) 

 

 

FIGURE: 4.8  

ANN Output Status for SP condition (Sr. No. 9 of Table 3.3)
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FIGURE: 4.9 

ANN Output Status for VUB condition (Sr. No. 10 of Table 3.3) 
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CHAPTER - 5 

Experimental Setup for Induction Motor 

External Faults Real-Time Data Sets 

5.1 Experimental Setup  

Five external faults and normal conditions are experimentally created on operational three 

phase induction motor. Real time RMS three phase voltages and currents data sets are 

obtained for the external faults detection and classification using Logger.  3 Phase, 2.2 

kW/3 HP, 415V, 4.7A, 50 Hz, 1430 rpm induction motor coupled with 3 HP 220V, 1500 

rpm separately excited  dc generator set is used for the experiment. The induction motor is 

supplied through three phase autotransformer. DC generator is loaded with rheostat setup. 

Average RMS values of three phase voltage and currents are logged at the time interval of 

0.5s using logger of sample rate 10.4 kHz. A representative set is prepared for the training 

and testing of classifiers. Fig. 5.1shows the block diagram of experimental setup and Fig. 

5.2 and Fig. 5.3 shows the experimental setup and its details. 

 

 FIGURE 5.1 

Experimental Block Diagram
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FIGURE 5.2  

Experimental Setup 

 

 

 

FIGURE 5.3 

Experimental Setup Details 
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5.2 Power Log PC Software and Fluke 1735 

Power Log is PC software for fluke 1735 and it‟s some other versions. The software 

accepts data downloaded from fluke logger. After transferring logged data to a PC for 

graphical and tabular evaluation, data also can be exported to spread sheet. With the use of 

fluke 1735 logger voltage, current and power studies can be conducted. By selecting 

logging menu in parameter configuration averaging time can be adjusted. When a flexi set 

or current probe is connected to the instrument it is automatically recognized, but only at 

power up. In current probes or flexi set submenu in instrument setup current measuring 

range can be selected with current transformer or without current transformer. In Power 

network submenu of instrument setup menu power type like single phase, three phase star 

or delta can be selected with nominal phase voltage and frequency. With the use of logging 

function Record/Measure button logging function can be started. Power Log PC software 

provides data downloaded, analysis and reporting in one package. 

 

5.3 Experimental Results for Normal and Different External Faults 

Condition 

Fig. 5.4 shows the real time logged three phase voltage and current waveform for normal, 

OL, OV and UV conditions and Fig. 5.5 shows for SP conditions respectively. Similarly 

the real time data sets are logged for VUB conditions and shown in Fig 5.6. Matlab scatter 

plot for practical data sets is shown in Fig. 5.7. L12, L23, L31 are three phase RMS line 

voltages and L1, L2 and L3 are three phase RMS line currents in Fig. 5.4, Fig. 5.5 and Fig. 

5.6. OV and UV conditions are created using 3 phase autotransformer arrangement. OL is 

created using increasing load on dc generator through rheostatic load arrangement. VUB 

conditions are created using rheostats in two phases and single phasing by use of knife 

switch in each phase. Data sets for normal conditions are obtained with load varying from 

50% to 105% and voltage within ±10% variations. While above 109.5% and less than 

90.5% rated operating voltages are taken for overvoltage and undervoltage condition. 

Overvoltage condition data sets are taken upto nearly 113 % of rated operating voltage and 

undervoltage upto 86 % of rated operating voltages is considered. Similarly overload is 

considered from 105% to 120% of full load in experimentation.  
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FIGURE 5.4 

Three Phase RMS Voltages and RMS Currents for Normal, OL, OV and UV 

Condition 

 

 

FIGURE 5.5 

Three Phase RMS Voltages and RMS Currents for SP condition 
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FIGURE: 5.6 

Three Phase RMS Voltages and RMS Currents for VUB Condition 

 

 

 

 

 

FIGURE 5.7 

Scatter Plot of Practical Data Sets 
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We have prepared 321 representative data sets (patterns) for finding best generalized 

MLPNN, SC_FIS, PNN and ANFIS configurations in Chapter 6. The details and results for 

each technique are discussed in Chapter 6. All classifier performance including LDA and 

NBC is compared in Chapter 8 using statistical measures like total classification accuracy, 

sensitivity, specificity, precision and overall F-measure using 72 independent test data sets 

and 321 input train patterns.  

 

The 321 input train and 72 independent test patterns are shown in Appendix-C and 

Appendix-D respectively. The number of train and test data sets patterns used for different 

output (normal and external faults) conditions are shown in Table 5.1. Table 5.2 shows the 

some example patterns of practically obtained independent test (unseen) data sets. 

 

 

TABLE 5.1 

Number of Patterns for Practical Train and Independent Test Data Sets   

 

Sr. No. Condition  Train Data Independent Test Data 

1 Normal (N) 140 22 

2 Overload (OL) 30 10 

3 Overvoltage(OV) 30 8 

4 Undervoltage(UV) 30 10 

5 Single Phasing (SOP) 41 9 

6 Voltage Unbalance Condition (VUB) 50 13 
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TABLE 5.2 

Example of Independent Test Inputs for Practical Data Sets 

Sr. 

No. 

Output 

Condition 

VRY 

 

VYB 

 

VBR 

 

IR 

 

IY 

 

IB 

 

1 N 410.571 408.268 409.445 4.568 4.459 4.691 

2 N (VUB 

within normal 

limit 0.83 %) 

400.055 405.94 401.769 4.036 4.391 4.173 

3 OL 414.895 413.257 414.102 5.755 5.659 5.986 

4 OV 462.103 459.365 461.412 4.473 4.255 4.527 

5 UV 360.702 357.452 359.448 4.759 4.609 4.841 

6 SP(R Phase) 351.106 411.287 309.22 0.014 6.436 6.491 

7 SP(B Phase) 421.497 341.179 363.798 5.345 5.195 0.014 

8 VUB  

(1 Phase ) 

388.336 410.161 395.398 3.518 4.909 4.091 

9 VUB 

 (2 Phase) 

376.975 405.018 384.651 3.45 5.25 4.255 
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CHAPTER - 6 

Induction Motor External Faults Identification 

Using MLPNN, SC_FIS, PNN, ANFIS, NBC and 

LDA Classifier for Practical Data Sets 

This Chapter deals with external faults identification of induction motor using soft 

computing (MLPNN, SC_FIS, PNN and ANFIS) and conventional (LDA and NBC) 

classification methods. The data sets patterns obtained through experimentation are utilized 

as input feature vector to MLPNN, SS based FIS, PNN, NBC and LDA classifier for 

evaluating external faults identification performance. 

 

6.1 External Faults Identification Using MLPNN 

A MLPNN model with excessive or insufficient number of neurons in the hidden layer 

most likely cause the problems of bad generalization and overfitting. The determination of 

appropriate number of hidden layers is one of the most critical tasks in neural network 

design. There is no analytical method for determining the number of neurons in the hidden 

layer. Therefore it only found by trial and error [1] [2]. As cited in Chapter 4 one hidden 

layer is sufficient for feedforward networks to approximate any continuous mapping from 

the patterns to the output patterns to an arbitrary degree of accuracy. Several single hidden 

layer neural network configurations were tested with growing neurons to find the optimal 

neural network configuration using trial and error method. For that, the training data sets 

are divided in 2 parts training and validation subsets. Early stopping is used to stop the 

neural network training. ANN training is stopped when validation error is found increasing 

while training error decreasing for consecutive 6 epochs. The fault diagnostic target output 

assignment is shown in Table 6.1. The six input variables (three phase RMS voltages and 

currents) constitute input and six output conditions constitute the output of MLPNN. 
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Validation subset accuracy alongwith validation error and train subset accuracy are 

considered and compared to find optimal MLPNN configuration. This comparison is 

shown in Table 6.2.  Each ANN configuration is tested atleast 20 times with reinitialized 

weights and biases. MLPNN configuration  6-12-6 with 12 hidden neurons is considered as 

the best generalized and well trained configuration as it has  high validation subset 

classification accuracy, least validation error and also high train subset accuracy. The best 

generalized MLPNN configuration is used for classifiers comparison with 72 independent 

test data sets in chapter 7.   

TABLE 6.1 

Target Output  

 

Output 

Condition 

Target output 

VUB 1 0 0 0 0 0 

SP 0 1 0 0 0 0 

UV 0 0 1 0 0 0 

OV 0 0 0 1 0 0 

OL 0 0 0 0 1 0 

N 0 0 0 0 0 1 

 

TABLE 6.2 

MLPNN Configurations Validation Accuracy, Validation Error, Train Accuracy and 

Train Error With Different Hidden Neurons for Practical Data Sets 

 

 

Hidden 

Neurons 

Validation 

Error 

Validation Subset 

Classification 

Accuracy 

Training  

Error 

 Train Subset 

Classification 

Accuracy 

5 0.0063 99 0.0022 99.1 

6 0.0061 99 0.0017 99.7 

7 0.0081 99 0.0024 99.7 

8 0.0054 97.9 0.0013 99.4 

9 0.0046 99 0.00029 99.7 

10 0.0068 97.9 0.00035 99.4 

11 0.0039 99 0.0047 99.1 

12 0.0029 100 0.00086 100 
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6.2  External Faults Identification Using Subtractive Clustering Based 

Sugeno Fuzzy Inference System (SC_FIS) 

Fuzzy logic based system is able to approximate the complex relationship related to 

diagnosis task [3]. The principle of this theory is to quantify the uncertainties in a given 

system using MFs. Fuzzy clustering methods are one of the strategies implemented to 

identify these MFs by organizing data samples into clusters so that the data samples within 

clusters are more similar to each other [4]. A fuzzy logic approach helps in accurate 

diagnoses induction motor faults and is also able to extract the heuristics related to 

diagnosis of faults. 

6.2.1 Fuzzy logic and systems 

6.2.1.1 Fuzzy Logic 

In crisp logic, the truth values acquired by propositions or predictors are two valued 

namely true or false which may be treated numerically equivalent to (0 1). However in 

fuzzy logic truth values are multivalued and are numerically equivalent to (0-1) [5]. 

6.2.1.2 Fuzzy Set  

If X is universe of discourse and x is a particular element of X, then fuzzy set „A‟ defined 

on X may be written as a collection of ordered pairs  

A   {(x,  A (x), x∊X}…………………………………………………………………(6.1) 

Wherein (6.1) each pair (x,  A (x)) is called singleton.  A (x) is the membership function  

and associated with a fuzzy set A such that the function maps every element of the 

universe discourse X to the interval [0 1] [5]. 

6.2.1.3 Fuzzy Logic Proposition 

A fuzzy logic proposition „P‟ is a statement that involves some fuzzy concepts. Linguistic 

statements that tend to express subjective ideas typically involve fuzzy propositions. The 

truth value assigned to P can be any value on the interval [0 1]. Suppose proposition P is 

assigned to fuzzy set A; then the truth value of a proposition denoted T(P) is given by 

T(P)    A (x) where 0 ≤  A ≤1………………………………………………………(6.2)
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Equation (6.2) indicates that degree of truth of proposition P: x ∊ A is equal to the 

membership grade of x in the fuzzy set A [6]. 

6.2.1.4 Fuzzy Inference System  

The fuzzy inference system is a popular computing framework based on the concepts of 

fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. It has found successful 

applications in wide variety of fields such as automatic control, data classification, decision 

analysis, expert systems, time series prediction, and robotics and pattern recognition. 

Because of multidisciplinary nature the fuzzy inference system is known by numerous 

other names such as fuzzy rule based system, fuzzy model, fuzzy expert system, fuzzy 

associative memory, fuzzy logic controller and simply fuzzy system. 

Fuzzy inference system can take either fuzzy inputs or crisp inputs and output it produce 

almost always fuzzy. Sometime it is necessary to have crisp outputs according to need of 

applications. Therefore a method of defuzzification is needed to extract crisp value that 

best represents a fuzzy set. A fuzzy inference system with a crisp output is shown in Fig. 

6.1 where the border line indicates a basic fuzzy inference system with fuzzy output and 

defuzzification block transforms an output fuzzy set into a crisp single value [7].  

X is A1 Y is B1

X is A2 Y is B2

X is Ar Y is Br

AggregratorX Defuzzifier

Rule 1

Rule 2

Rule r

 

FIGURE 6.1 

Block Diagram of Fuzzy Inference System [7] 

With the crisp inputs and outputs, a fuzzy inference system implements a nonlinear 

mapping from its input space to output space. This mapping is accomplished by a number 

of fuzzy if then rules each of which describes the total behaviour of the mapping. In 
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particular, the antecedent of a rule defines a fuzzy region in the input space, while the 

consequence specifies output in the fuzzy region. Mamdani and Sugeno type of FISs 

widely used in various applications. The difference between these two FISs lies in the 

consequents of their fuzzy rules, and thus their aggregation and defuzzification procedures 

differ accordingly. Mamdani fuzzy models are based on expert knowledge means well 

suited to human input. Sugeno FIS is computationally efficient and works well with 

optimization and adaptive techniques. It has guaranteed continuity of the output space and 

well suited to mathematical analysis. It is similar to the Mamdani method in many respects. 

The first two parts of the fuzzy inference process, fuzzifying the inputs and applying the 

fuzzy operator, are exactly the same. The main difference between Mamdani and Sugeno is 

that the Sugeno output membership functions are either linear or constant 

6.2.1.5 Sugeno Fuzzy Inference System 

Sugeno or also known as Takagi-Sugeno-Kang method of fuzzy inference introduced in 

1985 [8] in an effort to develop a systematic approach to generating fuzzy rules from a 

given input-output data set. A typical fuzzy rule in a Sugeno fuzzy model has the form 

If x is A and y is B then z = f(x,y)………………………………………………………(6.3) 

Wherein (6.3) A and B are fuzzy sets in the antecedent, while z = f(x,y) is a crisp function 

in the consequent. Usually f(x,y) is a polynomial in the input variables x and y, but it can 

be any function as long as it can approximately describe the output of the model within the 

fuzzy region specified by the antecedent of the rule. When f(x,y) is a first order polynomial 

the resulting FIS is called first order Sugeno fuzzy model. For a first order Sugeno fuzzy 

model since each rule has a crisp output the overall output is obtained via weighted 

average, thus avoiding the time consuming process of defuzzification required in mamdani 

model. Without time consuming and mathematically intractable defuzzification operation, 

the Sugeno fuzzy model is most popular candidate for sample-data-based fuzzy modelling 

[7]. 

6.2.2 Clustering 

Natural groupings in data from data sets can be very effectively identify using clustering 

and so it allows concise representation of relationships embedded in the data. In this case 

of fault identification clustering allows us to group fault patterns into broad categories and  
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hence provides easier interpretability. The most representative offline fuzzy clustering 

techniques include mountain clustering, FCM, and subtractive clustering. Mountain 

clustering relies on dividing the data space into grid points and calculating a mountain 

function at every grid point which is a representation of density of data at that point.  The 

disadvantage of this algorithm is computation increases exponentially with increased in 

input data dimension as the mountain function has to be calculated at each grid data point 

so not suitable for problems of dimension higher than two or three [9]. 

Several parameters need to specify like number of clusters c, fuzziness component m, 

termination tolerance, fuzzy partition matrix U in case of FCM.  Performance of FCM 

depends on the initial membership matrix values. So several runs each starting with 

different values of membership grades of data points probably give good performance in 

FCM. 

6.2.2.1 Subtractive Clustering 

Subtractive clustering is a fast one pass algorithm for estimating number of clusters and 

cluster centers in a set of data when it is difficult to decide how many clusters should be for 

data set. “Ref [10]” presented substractive clustering algorithm, modified form of 

mountain clustering method, as the basis of fuzzy identification algorithm and instead of 

grid point each data point considered as potential cluster centre. In Yeager‟s [11] mountain 

clustering computation grows exponentially with the dimension of the problem because 

mountain function has to be evaluated at each grid point. As data points used for cluster 

centers computation is proportional to the problem size instead of problem dimension. It 

also eliminates the need of specifying grid resolution and does not involve any iterative 

nonlinear optimization. However the actual centers are not necessarily located at one of the 

data points, but in most case it is a good approximation. 

Since each data point is a candidate for cluster centers, a potential measure at data point xi 

is defined as 

Pi  ∑ exp (- ‖xi – xk‖
2
)n

j 1   ……………………………………………………………(6.4) 

Wherein (6.4)   = (r
a
/2)

2
 and ra is positive constant represents a neighbourhood radius. A 

data point will have a high potential value if it has many neighbouring data points.  The 

first cluster center xk1
*  is chosen as the point having largest potential value p

k1
*

.  Next the 

potential measure of each data point is revised as follows: 
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Pi Pi-   k 
* exp (- ‖xi –xk1

*
 ‖
2
)   …………………………………………………………(6.5) 

Where      (    )
  . 

rb is a positive constant which defines a neighbourhood that has measurable reductions in 

potential measure. Therefore the data points near the first cluster center xk1
*  will have 

reduced potential measure and therefore are unlikely to select as the next cluster centre. To 

avoid obtaining closely spaced cluster centers a good choice is rb = 1.5 ra. After revising the 

potential function according (5), the next cluster center is selected as the point having the 

greatest potential value and the process continues until a sufficient number of clusters are 

attained given as 

Pi Pi-  k
* exp (- ‖xi –xk

*
 ‖
2
) ……………………………………………………..……. (6.6) 

In Yager and Filev‟s mountain clustering procedure [11] the process of revising potential 

repeats until    
  ˂ ε  

  where ε is an important factor affecting the results; if ε is too 

large, too few data points will be accepted as cluster centers and viceversa. Chiu developed 

additional criteria for accepting and rejecting cluster centers as it was found difficult to 

establish a single value of ε that works well for data patterns in which two thresholds are 

utilized one for the potential above which data point accepted and other for threshold 

below which rejection of data point and for in between two threshold (6.7) is utilized. 

Dmin

ra
+
Pk
*
 

P1
*   1  ………………………………………………………………………….. (6.7) 

Wherein (6.7) dmin is the shortest distances and    
  is location of k

th
 cluster centre between 

all previously found cluster centers [10]. 

6.2.3 Subtractive Clustering Based Sugeno Fuzzy Inference System (SC_FIS) 

Subtractive clustering was applied to extract the rules for identifying each class of data 

after the input and output were assigned. The clusters found in the data sets of a given 

group identify regions in the input space that map into associated class so it can translate 

each cluster centre into a fuzzy rule for identifying the class [12]. The fundamental feature 

of clustering based rule extraction method of rules generation helps avoid combinatorial 

explosion of rules with increasing dimension of input space [13]. 
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As discussed in [10], cluster center   
   was considered as fuzzy rule that described the 

system behaviour.  A set of c cluster centers {    
    

        
 } were considered in M 

dimension space and among them first N dimensions corresponded to input variables and 

last M-N corresponded to output variables.  Each   
   vector was decomposed into two 

component vectors   
   and   

   , where   
   contained the first N elements of   

    (i.e the 

coordinates of cluster center in input space) and   
  contained M-N elements (i.e., the 

coordinates of the cluster centers in outspace). 

The computational model was viewed as fuzzy inference system which employed each rule 

in following form. 

 

If Y1 is Ai1 & Y2 is Ai2 &. . . then Z1 is Bi1 & Z2 is Bi2. …………………………………(6.8) 

 

Where in (6.8) Yj is the j
th

 input variable, Zj is the j
th

 output variable and Aij is the 

exponential membership function in the i
th

 rule associated with j
th

 input. Bij  is a singleton 

membership function in the i
th

 rule associated with j
th

 output centered around    
 . The 

membership function Aij is given by (6.9). 

Aij (Yj)   exp {-
1

2
(
Yj-Yij

*

 ij
)
2

   ………………………………………………………… (6.9) 

Where in (6.9)  Yij
*   is the j

th
 element of y

i
* and   ij

2 2/(r
a
)
2
. ra is positive constant represents 

a neighbourhood radius in subtractive clustering. 

This computational scheme is equivalent to an inference method that uses multiplication as 

the AND operator, weights the consequence of each rule by the rule‟s degree of fulfilment, 

and computes the final output value as weighted average of all the consequences.  For the 

optimization of rules,     
  (   

   is the j
th

 element of   
  ) was considered as a  linear function 

of the input variables, instead of constant, as 

 Zij
*    Gij y+ hij ………………………………………………………………..………(6.10) 

Where in (6.10) Gij is N element vector of coefficients and hij is a scalar constant. The if-

then rule then becomes the Takagi-Sugeno type.  
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As in [8], given a set of rules with fixed premise membership functions, optimizing Gij and 

hij in all consequent equations is a simple linear least square estimation problem. Chiu in 

[10] used this approach to optimize the rules obtained from the subtractive clustering 

method. Optimizing only the coefficients in consequent equations allows a significant 

degree of model optimization to be performed without adding much computational 

complexity. We have adopted the similar approach proposed by [10]. Subtractive 

clustering based FIS approach is used for external faults classification using genfis2 in 

MATLAB environment with own written codes. By applying subtractive clustering to each 

class of data sets, a set of rule can be obtained for identifying each class. The combined 

form of individual sets of rules form the rule base classifier.  For example suppose we 

found 2 cluster centers in class C1 data sets and 3 centers in class C2 data sets the rule base 

will contain 2 rules that identify class C1 members and 3 rules that identify class C2 

members [14].  

 

FIS is used to collect all of fuzzy rule base to set up the crisp output.  From these fuzzy 

rules, the membership of each data on each cluster can also be performed, and antecedent 

of each rule can be quantified. This quantification process for each rule produces weight 

for each fuzzy rule base to set the fuzzy output for each class. In this work, each class 

output for any pattern is calculated using weight-average method and the higher of class 

outputs represents final output condition for the any pattern [4]. 

 

A FIS is composed of inputs, outputs, and rules. Fig. 6.2 shows an example of subtractive 

clustering based FIS network for six class classification. Three phase voltages and three 

phase line currents are inputs to FIS and six output conditions (Five external faults and 

normal) constitute the output of FIS. Each input and output may have any number of 

membership functions (MFs) decided by clustering radius selected. Gaussmf is used as 

input variables MF for FIS. The rules dictate the behaviour of the fuzzy system based on 

inputs, outputs and MFs. The parameters of subtractive clustering were chosen as follows: 

squash factor 1.25, accept ratio 0.5 and rejection ratio 0.15. Clustering and FL together 

provide a simple and powerful means to model the fault relationship. 
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FIGURE 6.2  

 

Subtractive Clustering Based FIS Network for Six Class Classification 

6.2.4 Classification Results and Rules Obtained Using SC_FIS 

We measure the performance of fault identification by 10-fold random subsampling cross 

validation of total train input 321 data sets. In 10-fold random subsampling cross validation 

method, data sets are splitted in train (75%) and test (25%) fold. Train data sets are used to 

construct FIS model and test data sets are used to evaluate the model. Table 6.1 shows 

target output assigned to FIS during training. Total average test classification accuracy and 

average RMSE of 10 fold testing data sets are used as performance measures to assess the 

performance of this method for different output condition classification.  

The output layer of subtractive clustering based FIS system shown in Fig. 6.2 produce net 

output fuzzy vector for its each class of input. The maximum of the output fuzzy vector 

represents the final class as winner takes all condition. A compete transfer function is used 

which produces 1 for that class and 0 for other classes. The output of FIS for a particular 

condition (fault or normal) is close to 1.0 (usually in range of 0.5-1.0) while the other 

outputs are close to 0.0 (usually in range of 0.0 - 0.5). Table 6.3 shows total average 
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classification accuracy and RMSE error obtained for train and test data sets of 10 times 

random subsampling cross validation data sets with different cluster radius. We have 

attempted to find best generalized configuration which have highest test classification 

accuracy and also least RMSE error and least possible rules. It is observed from Table 6.3 

that the error with respect to experimentally obtained testing data diverges significantly 

when the cluster radius less than 0.2, showing model is overfitting.  

TABLE 6.3 

Total Average Classification Accuracy, Average RMSE Error and Rules for FISs 

Obtained With Different Cluster Radius for Practical Data Sets 

  

Cluster 

Radius 

Average Train 

Accuracy (%) 

Average Test 

Accuracy (%) 

Average Test 

RMSE Error 

Average 

RMSE 

Train 

Error 

No. of 

Rules 

0.1 99.87 90 32300 0.1 22 

0.2 98.17 92.75 498.32 0.1696 14 

0.3 96.87 93.88 0.711 0.211 8 

0.4 96.62 92.25 0.608 0.244 7 

0.5 96.63 94.37 0.4032 0.276 6 

0.6 96.42 93 0.703 0.291 5 

0.7 96.46 90.88 0.492 0.294 5 

0.8 96.67 92.12 0.74 0.3 5 

0.9 96.5 91.87 0.54 0.3 5 

 

The best generalized FIS is obtained for practical data sets is with cluster radius 0.5 that 

have highest average test classification accuracy and least RMSE test error. The FIS 

obtained have 6 clusters, 6 premise MFs and 6 rules. A fuzzy classification rule Ri which 

describes the relation between the input feature space and classes obtained as, 

Ri: If Xp1 is φi1 and _ _ and Xpj is φij and_ _ and Xpn is φin then Outp1 is φi1 and_ _ and Outps 

is φiv and _ _Outpm is φim. ……………………………………………………………...(6.11) 

Where Xpj denotes the j
th

 input variable of p
th

 sample; n represents the number of inputs; φij 

denotes the fuzzy set of the j
th

 variable in the i
th

 rule and characterized by the appropriate
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membership function. Outps represents s
th

 output class of p
th

 sample; m represents number 

of output class; φiv denotes the fuzzy set of the v
th

 output class in i
th

 rule. Similarly the rule 

R1 of Fig. 6.3 obtained for practical data is as follows. 

R1: If (VRY is in1cluster1) and (VYB is in2cluster1) and (VBR is in3cluster1) 

and (IR is in4cluster1) and (IY is in5cluster1) and (IB is in6cluster1) then 

(VUB is out1cluster 1) and (SP is out2cluster1) and (UV is out3cluster1) and 

(OV is out4cluster1) and (OL is out5cluster1) and (N is out6cluster1)…...(6.12) 

Fig. 6.3 shows the ruleviewer of FIS obtained with cluster radius 0.5 for experimentally 

obtained real time data sets. Table 6.4 shows the six cluster centers and spread coefficients 

(standard deviation) of six clusters obtained for the six FIS inputs having 0.5 cluster radius 

through subtractive clustering. The six output classes each have six linear MF (with 

consequent parameter). 

 

 

 

FIGURE 6.3 

FIS (Obtained With Cluster Radius 0.5) Rules 
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TABLE 6.4 

Cluster Centers, Standard Deviation and Rules Obtained Through Subtractive 

Clustering for Experimentally Obtained Data Sets FIS with Cluster Radius 0.5 

 

Cluster 

no. 

obtained 

for six 

inputs 

and 

Rule no. 

Spread 

coefficient 

[36.23] 

and 

cluster 

centre for 

VRY (In) 

Spread 

coefficient 

[30.11] 

and 

cluster 

centre for 

VYB (In 2) 

Spread 

coefficient 

[39.42] 

and 

cluster 

centre for 

VBR (In 3) 

Spread 

coefficient 

[1.51] 

and 

cluster 

centre for 

IR (In 4) 

Spread 

coefficient 

[2.05] 

and 

cluster 

centre for 

IY (In 5) 

Spread 

coefficient 

[2.08] 

and 

cluster 

centre for 

IB (In 6) 

Dominant 

Rules 

for 

condition 

1 412.695 409.701 408.191 4.036 3.886 4.2 N 

2 393.351 405.581 397.726 3.859 4.623 4.132 VUB 

3 460.389 457.805 459.98 4.459 4.227 4.514 OV 

4 370.578 367.789 368.838 4.718 4.623 4.827 UV 

5 410.059 408.063 409.24 5.195 5.059 5.345 OL 

6 451.638 448.9 450.64 4.527 4.35 4.595 N 

 

The final output class (condition) for a particular pattern appears to FIS (fault or normal) is 

close to 1.0 (usually in range of 0.5-1.0) while the other outputs are close to 0.0 (usually in 

range of 0.0 - 0.5). If, a data sets point with strong membership to the first cluster is fed to 

FIS, then rule1 will fire with more firing strength than the other rules. Similarly, if an input 

have strong membership to two clusters then that two cluster related rules fire with more 

strength than other rules. Rules with lesser weights count for less in the final output. It is 

observed through subtractive clustering that the dominant rules obtained for normal 

conditions are 1 and 6, for overvoltage 3, for overload 5, for undervoltage 4 and for voltage 

unbalance conditions 2. As single phasing is worst case of voltage unbalance, here we 

obtain a common FIS rule for voltage unbalance and single phasing identification in best 

generalized FIS for real time data sets.  The Rule R1 can be interpreted as 

R1: If (VRY is in1cluster1) and (VYB is in2cluster1) and (VBR is in3cluster1) and (IR is 

in4cluster1) and (IY is in5cluster1) and (IB is in6cluster1) then condition is 

normal………………………………………………………………………………….(6.13) 

The other rules can be interpreted in similar way and shown in Table 6.4. The generalized 

FIS does monitor and detect faults for train patterns and (unseen) test inputs accurately. 
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Experimental results show that FIS is able to detect test input with good amount of total 

overall classification accuracy of 94.4% respectively using proposed approach. The best 

FIS configuration is used for comparison with other classifier using independent test data 

sets in chapter 7. The output fuzzy status shows the relative output of six class conditions 

for train and test patterns. So monitoring of FIS output results is also possible and helpful 

in maneuver the motor operation is an additional advantage. 

Fig 6.5 to Fig. 6.7 show the best generalized FIS configuration Fig 6.4 output results for 

some example independent test patterns of Table 5.2  

 

FIGURE 6.4 

FIS 

.
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FIGURE 6.5 

FIS Ruleviewer for Normal condition Sr. No. 1 of Table 5.2 

 

 

FIGURE 6.6 

FIS Ruleviewer for UV condition Sr. No. 5 of Table 5.2
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FIGURE 6.7 

FIS ruleviewer for VUB condition Sr. No. 9 of Table 5.2 

6.3 External faults identification Using PNN 

6.3.1 Probabilistic Neural Network (PNN)  

The PNN was first presented by D. F. Spechet is a feedforward network formulation of 

probability density estimation and competitive learning. It provides a general solution to 

pattern classification problems and based on stastical approach of bayseian classifier. The 

network paradigm also uses Parzen estimators which were developed to construct 

probability density function (pdf) required by bayes theory. The PNN used a supervised 

training set to develop distribution functions within a pattern layer. These functions are 

used, in recall mode, to estimate the likehood of an input feature vector being part of 

learned category or class. The learned pattern can also combined or weighted with the prior 

probability of each class to determine the most likely class for a given input vector. If the 

prior probability is unknown then all class can be assumed to be equally likely and the 

determination of class is solely based on the closeness of the input feature vector to the 

distribution function of a class [15].  
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If the pdf of each of the population is known then an unknown x belong to class i 

according to Bayes optimal decision rule is given by  

hicifi > hjcjfj   fo  all j≠i ………………………………………………………………(6.14) 

fk is the pdf for class k. The other parameter h is the prior probability and c is 

misclassification cost which expresses the cost of incorrectly classifying an unknown [16].   

In many situations, the loss functions and prior probabilities can be considered equal. So 

the using decision rule given by equation above is to estimate the probability density 

functions from the training patterns [17] [12]. 

In case of inputting network a vector the pdf for a single sample will be given as 

f(x) 
1

(2 )m/2 ( )m 
exp (- (x-xj)

T
(x-xj)|(2 )

2 ) …………………………….................. (6.15) 

m is the input space dimension, xj is the j
th

 sample number and 𝜎 is an adjustable 

smoothing parameter. pdf for a single population is calculated from the parzen‟s pdf 

estimator as 

fi(x) 
1

(2 )m/2 ( )m ni
∑ exp (- (x-xj)

T
(x-xj)|(2 )

2 )
ni
j 1  ………………………………… (6.16) 

Which is the average of the pdf‟s for ni samples in the i
th

 population. The classification 

criteria in this case of multivariate input will be expressed as follows 

fi(x)> fj (x),  for all j≠i  

fi(x) 
1

ni
∑ exp (- (x-xj)

T
(x-xj)|(2 )

2 )
ni
j 1  …………………………………................ (6.17) 

Which eliminate the common factors and absorb the „2‟ into 𝜎.  

PNN architecture learning speed is very fast which makes it capable to adapting its 

learning in real time, deleting or adding training data as new condition arises. PNN can be 

shown to always converge to the Bayes optimal solution as the number of training samples 

increase. PNN belongs to family of radial basis function NN which due to their robustness 

widely used in pattern classification problems. PNN handle data that has spikes and points 

outside the norm better than other neural networks.  It requires large space in memory [18].
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6.3.2 PNN Architecture 

The structure used in this study as shown in Fig. 6.8 has multilayer structure consisting of a 

single radial basis function hidden layer of locally tuned neurons which are fully 

interconnected to an output competitive layer of six neurons. In this system real valued 

input vector is feature vector consist values of three phase RMS voltage and currents and 

six outputs are index of six classes.  All hidden neurons simultaneously receive six 

dimensional real valued input vectors via neuron weights. The hidden layer consists of a 

set of same type of radial basis function (Gaussian) and associated with j
th

 hidden unit is 

parameter vector called cj a center. The first layer input weights IW1,1 are set to the 

transpose of the matrix formed for the Q training pairs P‟. The hidden layer node calculate 

the Euclidean distance between centre and new input vector and produce a vector whose 

elements indicate how close the input to the vectors of training set.  These elements are 

multiplied element by element by the bias and sent to the radial basis transfer function. An 

input vector close to a training vector is represented by a number close to 1 in the output 

vector a1. If input is close to several of a single class; it is represented by several elements 

of a1 that are close to 1 [12]. 

a1  radbas ( ‖IW1,1-p‖.*b)  …………………………………………………………(6.18) 

Where radbas is radial basis transfer function and can be given as  

radbas(n) exp (-n
2
)   

Here, 

  n  ( ‖IW1,1-p‖.* b) ………………………………………………………………… (6.19) 

The second layer weights LW 2,1 are set to the matrix of target vectors. Each vector is set 

to the matrix T of target vectors. Each vector has 1 only in the row associated with that 

particular class of input and 0‟s elsewhere. The multiplication of T and a
1
 sums the 

elements of a1 due to each of the k input classes. Finally second layer transfer function, 

compete produce 1 corresponding to target element of n2 and 0‟s elsewhere [12]. In our 

case the hidden neurons are 321 same as number of patterns.    
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FIGURE 6.8  

PNN Architecture [12] 

 

FIGURE 6.9 

Total Classification Accuracy Vs. Spread for PNN Training Subsets. 

6.3.3 Classification Results Obtained Using PNN 

We have used 321 total train input data sets by splitting in training (75%) and validation 

subsets (25%) for each class. Validation subsets are used to test PNN for each spread after 

training. The output assign according to Table 6.1 for training. Fig. 6.9 shows the results of 

PNN train and validation (subset of total train data sets) data sets classification accuracy 

against radial basis function spread. It is found from validation data sets classification 
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accuracy results that PNN gives most generalized results between spread 0.6 and 1. The 

results are obtained in MATLAB environment using newpnn and own written codes. The 

train and independent test data sets results of PNN obtained with 0.62 spared is considered 

for further comparison with other classifier performance using 72 independent test data 

sets in chapter 7. 

6.4  External Fault Identification Using ANFIS 

6.4.1 Introduction 

Neural Network and fuzzy set theory, which are termed soft computing techniques, are 

tools of intelligent system. Fuzzy system does not usually learn and adapt from 

environment, whereas ANN has the capacity of on line adaption and learning. Neuro-fuzzy 

system is the combination of neural network and fuzzy inference system. ANFIS is the 

fuzzy logic based paradigm that uses the learning ability of ANN to enhance intelligent 

system‟s performance using prior knowledge. Fundamentally a neuro-fuzzy system is a 

fuzzy network that not only includes a fuzzy inference system but can also overcome some 

limitations of neural networks and fuzzy systems as it can learn and able to represent 

knowledge in interpretable form.  The problem of selecting suitable MF values like in 

Mamdani fuzzy system can be avoided and that offers the possibility of solving tuning 

problems and design difficulties of fuzzy logic in most cases [19]. The basic structure of 

the classic FIS is a model that maps input characteristic to input MFs, Input MF to rules, 

rules to set of output characteristics, output MF to a single valued output or decision 

associated with the output. All these process are developed using fixed MFs. The neuro-

adaptive learning method works similar that of neural networks and provide a method for 

fuzzy modelling procedure to gather information about a dataset. Then fuzzy logic 

computes the MF parameters that best allow the associated FIS to track the given 

input/output data. It is able to construct an input-output mapping based on both human 

knowledge and simulated input-output data pairs. Fuzzy classification is the task of 

partitioning a feature space into fuzzy classes. It can be possible to describe feature space 

with fuzzy regions and control each region with fuzzy rules. It is possible to optimize MF 

parameters with neural networks. As a result fuzzy classification systems and NN can be 

combined which is named as adaptive neuro-fuzzy inference system [19]. ANFIS proposed 

by Jang [19] is shown in APPENDIX F. 
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6.4.2 Fault Identification Using ANFIS 

ANFIS is used for further premise parameter and consequent parameter optimization after 

generating subtractive clustering based FIS (as shown in FIGURE 6.2) with only one 

column output. ANFIS can be used for online and batch learning paradigm. Each epoch of 

batch learning composed of a forward pass and a backward pass. As in [20], in forward 

pass the antecedent parameters are fixed and the consequence parameters are optimized in 

least square estimation. Once the optimum consequence parameters are found the 

backward pass stage starts. In this stage gradient decent used to optimally adjust the 

antecedent membership parameters corresponding fuzzy sets in the input domain. The 

output of the ANFIS calculated by fixing the consequence parameters to the values found 

in the forward pass. The output error of the ANFIS is used to adapt the antecedent 

parameters using a standard backpropagation algorithm.  ANFIS is a fuzzy Sugeno model 

used with adaptive network to facilitate learning and adaption.  ANFIS can construct an 

input – output mapping based on both human knowledge and input output data 

observations. We have used Matlab ANFIS function and own written codes for fault 

diagnosis using ANFIS. 

6.4.3 ANFIS Architecture 

For a fuzzy inference system with six inputs VRY,VYB,VBR,IR,IY AND IB and one 

output Z with the first order Sugeno model fuzzy rules set can be written as 

If VRY is Ai1 and VYB is Ai2  and VBR is Ai3  and IR is Ai4 and IY is Ai5  and IB Ai6  then 

class  C1 = p1VRY +q1 VYB+ r1  VBR + s1  IR + t1  IY + u1  IY + v1. ……………… (6.20) 

Where (p1, q1, r1, s1, t1, u1, v1 ) are parameter of output functions. Aij is the exponential 

membership function as shown in (6.9). 

Layer 0: it consists of plain input variable set. In this case it is VRY, VYB, VBR, IR, IY 

and IB. 

Layer 1: The node function of every node i in this layer take the form as 

Oi
1
   Ai(VRY) ………………………………………………………………………(6.21) 



Ch. 6 External Faults Identification Using MLPNN, SC_FIS, PNN, ANFIS, NBC and LDA Using 
Classifier for Practical Data Sets 
 

84 
 

Where x is the input to node i, and     is the membership function which can be Gaussian, 

triangular or other shapes of the linguistic label    associated with this node. We have used 

Gaussian-shaped MFs defined as 

 Ai(VRY) exp (
(x-ci)

2

2 i
2 ) ……………………………………………………………… (6.22) 

Where {ci, 2 i
2
 } are the parameters of MF governing Gaussian functions. The parameters 

in this layer are referred as premise or antecedent parameters. 

Layer 2: Every node in this layer multiplies incoming signals from layer 1 and send 

product out as follows 

Oi
2
  wi   Ai(VRY)*   i(VYB)*_ _         …………………………………….……..(6.23) 

Layer 3: Every node i in this layer determines the ratio of the i
th

 rule‟s firing strength to the 

sum of all rules firing strength as 

Oi
3  wi ̅̅ ̅̅   

wi

w1+w2 + _ _ 
 i   1, 2,_ _     ……………………………………………………..(6.24) 

Output of this layer represents the normalized firing strengths. 

Layer 4: Every node in this layer is an adaptive node with a node function of the form  

Oi
4
   wi̅̅ ̅ f i   wi̅̅ ̅ (piVRY+qi VYB+ ri VBR+siIR+ti IY+ ti IB+ vi) ………………….(6.25) 

Where   ̅̅ ̅ is the output of layer 3, and {p
i
, q

i
, ri,si,ti,ui,vi  is the parameters set and 

parameters are referred as consequent parameters. 

Layer 5: The single node in this layer is a circle node labelled   that computes the overall 

output as summation of all incoming signals, i.e. 

O1
5   overall output   ∑ wi̅̅ ̅ fii   

∑ wifi  i 

∑  wi i
 ………………………………………………..(6.26) 

ANFIS is composed of inputs, outputs and rules. Each input and output may have any 

number of membership functions decided by clustering radius selected. Gaussmf is used as 

input variables membership function. The rules dictate the behaviour of the fuzzy system 
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based on inputs, outputs and membership functions. The parameters of subtractive 

clustering were chosen as follows: squash factor 1.25, accept ratio 0.5 and rejection ratio 

0.15. Clustering and FL together provide a simple yet powerful means to model the fault 

relationship that we want to develop.  

6.4.4 Classification Results and Rules Obtained Using ANFIS 

Three phase RMS voltages and current values are used as the inputs to ANFIS and six 

conditions constitute the output of ANFIS. The output assign for normal condition is 1(0.5-

1.5), 2 (1.5 - 2.5) for OL, 3 (2.5 – 3.5) for OV, 4 (3.5-4.5) for UV, 5 (4.5-5.5) for SP and 6 

(5.5-6.5) for VUB. We have attempted to obtain best generalized ANFIS configuration by 

comparing test classification accuracy of different cluster radius ANFISs. A large cluster 

radius generally results in fewer clusters and hence a coarser model, while a small cluster 

radius can produce excessive number of clusters and model that does not generalize well. 

Cluster radius is an approximate specification of the desired resolution of the model which 

can be adjusted based on resultant complexity and generalization ability of the model [10]. 

We have taken 321 data sets for ANFIS training and 72 data sets for testing FIS with 

independent test (unseen) input. The test data sets are also used as checking data alongwith 

ANFISs training for preventing overfitting for same number of epoch training. 

 

TABLE 6.5 

Test and Train Data Sets Total Classification Accuracy of ANFISs obtained With 

Different Subtractive Cluster Radius for Practical Data Sets 

Sr. No Cluster  

Radius 

% Total Classification  

Accuracy  

(Test Data sets) 

% Total classification  

Accuracy  

(Train Data Sets) 

Rules 

1 0.09 87.5 98.1 21 

2 0.1 89 95.3 20 

3 0.11 83.33 90.97 17 

4 0.12 89 93.3 15 

5 0.13 91.7 95.95 14 

6 0.14 90.3 93.77 13 

7 0.15 89 91 13 

8 0.16 73.6 86 12 

9 0.17 77.88 88.16 12 

10 0.18 77.78 86 12 

11 0.19 75 85.05 9 

12 0.2 72.22 83.5 9 
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Table 6.5 shows the results of train and test total classification accuracy of ANFISs 

obtained with difference cluster radius for practical data sets. The ANFIS configuration 

obtained with cluster radius 0.13 have highest test classification accuracy and less rules 

and chosen as the best generalized ANFIS configuration. The best ANFIS configuration is 

obtained with 14 clusters, 14 membership functions and 14 rules.  The dominant rules 

obtained for different conditions are shown in Table 6.6.  As single phasing is worst case of 

voltage unbalance, here we obtain a common FIS rule for voltage unbalance and single 

phasing identification in best generalized FIS for real time data sets same as SC_FIS. The 

output of ANFIS diagnosed as, for example, 

 if (VRY is in cluster1) and (VYB is in cluster1) and (VBR is in cluster1) and (IR is in 

cluster1) and (IY is in cluster1) and (IB is in cluster1) then output is OV………..(6.27) 

TABLE 6.6 

Cluster Centers, Standard Deviation and Rules Obtained Through Subtractive 

Clustering for ANFIS with Cluster Radius 0.13  

 
Rules Spread 

Coefficient 

[9.4]  

 and 

Cluster 

Centre 

for VRY  

(In 1) 

Spread 

Coefficient 

[9.075]   

and 

Cluster 

Centre 

for VYB 

 (In 2) 

Spread 

Coefficient 

[10.24] 

and 

Cluster 

Centre for 

VBR  

(In 3) 

Spread 

Coefficient 

[0.39]  

and 

Cluster 

Centre for 

IR  

(In 4) 

Spread 

Coefficient 

[0.54]  

 and 

Cluster 

Centre 

for IY  

(In 5) 

Spread 

Coefficient 

[0.54] 

 and 

Cluster 

Centre 

for IB 

 (In 6) 

Output 

Condition 

1 460.389 457.805 459.98 4.459 4.227 4.514 OV 

2 410.008 407.807 409.01 5.059 4.923 5.209 OL 

3 410.571 408.677 409.65 4.5 4.377 4.636 N 

4 394.067 409.906 399.722 3.695 4.705 4.05 VUB 

5 448.644 446.035 447.902 4.5 4.309 4.568 N 

6 370.578 367.789 368.838 4.718 4.623 4.827 UV 

7 416.405 414.614 415.842 3.791 3.695 3.886 N 

8 412.029 404.021 398.57 4.036 3.695 4.595 VUB 

9 382.169 379.355 380.685 4.623 4.514 4.732 N 

10 429.633 427.202 429.019 4.5 4.309 4.568 N 

11 396.728 393.76 395.372 3.968 3.873 4.009 N 

12 408.089 406.426 406.989 2.591 2.427 2.509 N 

13 376.054 372.446 374.032 4.064 4.009 4.105 UV 

14 414.793 413.181 414.153 5.727 5.632 5.959 OL 

 

The total train 321 and independent test 72 data sets results of ANFIS obtained with 0.13 

spared is considered for further comparison using with other classifier performance in 

chapter 7. Fig 6.10 shows the best generalized ANFIS configuration. Fig 6.11 to Fig. 6.13 

show the output results for some example independent test patterns of Table 5.2
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FIGURE 6.10 

ANFIS 

 

 

FIGURE 6.11 

ANFIS ruleviewer for Normal condition Sr. No. 1 of Table 5.2
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FIGURE 6.12 

ANFIS ruleviewer for OV condition Sr. No. 4 of Table 5.2 

 

FIGURE 6.13 

ANFIS ruleviewer for SP condition (R phase) Sr. No. 6 of Table 5.2  
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6.5 External Fault Identification Using NBC 

6.5.1 NBC 

The Naïve bayes model is a highly simplified and practical bayseian probability model. 

The Naïve bayes classifier depends on strong independence assumption so the probability 

of one attribute does not affect the probability of other. The Naïve bayes classifier 

advantage over bayes net is 2*n number of parameters for modeling require instead of 

2*(2
n
-1) for n number of variables. 

The Naïve bayes classifier applies to learning task where each instance or sample input 

vector X= {X1,X2, …, Xn }  is described by a conjunction of variables values and target 

function take any value from some finite set C, where  class labels C= {C1,C2, …Cj…Cm . 

Cm is number of classes. Naïve bayes classifier identify a new test instance described by 

tuple of input variables {X1,X2, …, Xn} based on most portable target class using posterior 

probability. 

Naïve bayes classifier used for prediction of class for new instance is based on bayes 

theorem. 

( ) ( | )
( | )

( )

j j
j

P C P X C
P C X

P X
  

……………………………………………………………….(6.28) 

In (6.28) P (Cj) is the prior probability of class Cj, P(X/Cj) is class conditional density or 

likehood, P(X) can be ignored as it is same for all class. Because of Naive assumptions the 

class conditional density can be estimated using 

1

( ) ( ( | )
n

j i j

i

P X C P X C


/  ……………………………………………………… (6.29) 

The class is decided for X is based on bigger posterior probability and given as 

1
1

max ( ) ( | )
n

j i j
j ...m

i

C arg P C P X C




  ……………………………………………………… (6.30) 

We have used sampled data of continuous signal of three phase voltages and currents as 

input data using logging device and used nonparametric normal kernel density estimation 

for finding class conditional probability. Conditional probability densities of each class can 
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be calculated as

 

1

1
( )

.

S
t

s
d

t

X x
P X k

S hh 


   ……………………………………………………………… (6.31) 

Wherein (6.31) S is number of data belonging to class, k is kernel function with its 

bandwidth or smoothing parameter h and d is number of dimension. For training purpose 

the data set is defined as tx . Class conditional density of testing data applied to a trained 

classifier is calculated as 

2

2
( )

2

1

1 1

2

tst tr

tst iy it

iy

Ntrj
i

trj t

x xX xp
C j N

e 








 
  

 …………………………………………(6.32) 

Wherein (6.32) Xi is i
th

 variable, j is determined class, 
tst

iyx  is y
th

 tested data and 
tr

itx  is 

training data that used. The gaussian kernel has width 𝜎 around each of the trkN  training 

pattern of class Cj [21] [22]. 

6.5.2 External faults Results Using NBC 

10-fold cross-validation is used and training data sets sets are divided in 10 equal folds of 

training and testing subset to find the average test classification accuracy. The average 10-

fold train classification accuracy obtained is 87.54%. The average 10-fold test 

classification accuracy obtained is 86.11%. The output assign for normal condition is 1, 2 

for OL, 3 for OV, 4 for UV, 5 for SP and 6 for VUB. Naïve bayes classifier is further used 

for comparison with other classifiers with 72 independent test data sets in chapter 7. 

6.6 External Faults Results Using LDA 

10-fold cross-validation is used and training data sets are divided in 10 equal folds of 

training and testing subset to find the average test classification accuracy. The average 10-

fold train classification accuracy obtained is 71.96 %. The average 10-fold test 

classification accuracy obtained is 76.39 %. The output assign for normal condition is 1, 2 

for OL, 3 for OV, 4 for UV, 5 for SP and 6 for VUB. LDA is used for comparison with 

other classifiers with 72 independent test data sets in chapter 7. 
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CHAPTER - 7 

Comparison between MLPNN, PNN, SC_FIS, 

ANFIS, NBC and LDA for Induction Motor 

External Faults Identification  

7.1 Measures of Performance Evaluation 

The following stastical measures to evaluate performance of classifiers for multiclass 

identification. 

 Total classification Accuracy: It is the total number of correct decisions to the total 

number of decisions.  

 

 Confusion matrix:  A confusion matrix contains information about output and 

target classifications done by a classification system. 

 

 Sensitivity (Recall or True positive rate (TPR)): It is the ratio number of true 

positives (TP) to number of actual positives. FN in (7.1) are false negatives. 

 

Sensitivity  
TP

TP+FN
 ................................................................................................(7.1) 

 

 Specificity: It is the number of true negatives (TN) decisions to number of actual 

negative cases. False Alarms (FPR) can be obtained by subtracting specificity from 

1. FP in (7.2) are false positives. 

 

Specificity  
TN

TN+FP
……………………………………………………………….(7.2) 

 

 Precision: It is a measure of the accuracy provided that a specific class has been 

predicated. 
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precision   
TP

TP+FP
………………………………………………………………..(7.3) 

 

 F-measure: It can be used as single measure of performance and it is harmonic 

mean of precision and sensitivity.  

 

F-measure  
2   precision   sensitivity

precision + sensitivity
 …………………………………………….....(7.4) 

7.2. Results and Discussions 

7.2.1 Classifier comparison Using total classification accuracy for total train 321 and 

72 independent test data sets 

We have used 321 data sets for training and independent 72 data sets for testing of the 

classifier. The details of data sets are given in Table 5.1.  

TABLE 7.1 

Fault Classification Accuracy Results of Classifiers 

Sr. 

No. 

Classifier % Total Classification 

Accuracy (Training 

Input Data Sets) 

% Total Classification 

Accuracy (Independent 

Testing Data Sets) 

Average 

classification 

Accuracy 

1 LDA 71.96 76.39 74.18 

2 NBC 87.54 86.11 86.83 

3 PNN 99.07 93.06 96.1 

4 MLPNN 100 98.61 99.3 

5 SC_FIS 96.57 97.2 97 

6 ANFIS 95.95 91.7 93.83 

 

Table 7.1 shows the total classification accuracy for train and independent test data sets of 

LDA, NBC, PNN, MLPNN, SC_FIS, and ANFIS classifiers. It is observed that neural 

network, SC_FIS and adaptive neurofuzzy classifier results are found more accurate and 

quite better than conventional Well-known LDA and simple probabilistic approach Naïve 

bayes classifier with respect to total classification accuracy of train and independent test 

data sets. All classifier are further compared with other statistical measures like sensitivity, 

specificity, precision and overall F-measure using total train (321) and independent (72) 
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test data sets. For that in following section confusion matrix for all classifiers are shown 

for training and independent testing data sets.  

Total classification accuracy sample calculation for the training data sets of SC_FIS based 

on confusion matrix (TABLE 7.4)  is shown in APPENDIX G. Sensitivity, specificity, 

precision and F-measure sample calculations for VUB and Normal condition output (N) for 

SC_FIS training data sets (TABLE 7.4) are also shown in APPENDIX G. 

7.2.2 Confusion Matrix for 321 Total Training and 72 Independent Test Data Sets for 

MLPNN 

TABLE 7.2 

Confusion Matrix for 321 Total Training Data Sets for MLPNN 

 

TABLE 7.3 

Confusion Matrix for 72 Independent Test Data Sets for MLPNN 

 

 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 50 0 0 0 0 0 

SP 0 41 0 0 0 0 

UV 0 0 30 0 0 0 

OV 0 0 0 30 0 0 

OL 0 0 0 0 30 0 

N 0 0 0 0 0 140 

  

TARGET CLASS 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 13 0 0 0 0 0 

SP 0 8 0 0 0 0 

UV 0 0 10 0 0 0 

OV 0 0 0 8 0 0 

OL 0 1 0 0 10 0 

N 0 0 0 0 0 22 

  

TARGET CLASS 
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7.2.3 Confusion Matrix for 321 Total Training and 72 Independent Test Data Sets for 

SC_FIS 

TABLE 7.4 

Confusion Matrix for 321 Total Training Data Sets for SC_FIS  

TABLE 7.5 

Confusion Plot for 72 Independent Test Data Sets for SC_FIS  

7.2.4 Confusion Matrix for 321 Total Training and 72 Independent Test Data Sets for 

PNN 

TABLE7.6 

Confusion Matrix for 321 Total Training Data Sets for PNN 

 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 50 0 0 0 0 3 

SP 0 41 0 0 0 0 

UV 0 0 30 0 0 4 

OV 0 0 0 29 0 1 

OL 0 0 0 0 30 2 

N 0 0 0 1 0 130 

  

TARGET CLASS 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 13 0 0 0 0 1 

SP 0 9 0 0 0 0 

UV 0 0 10 0 0 1 

OV 0 0 0 8 0 0 

OL 0 0 0 0 10 0 

N 0 0 0 0 0 20 

  

TARGET CLASS 

 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 50 0 0 0 0 0 

SP 0 41 0 0 0 0 

UV 0 0 29 0 0 0 

OV 0 0 0 30 0 0 

OL 0 0 0 0 30 2 

N 0 0 1 0 0 138 

  

TARGET CLASS 
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TABLE 7.7 

Confusion Matrix for 72 Independent Test Data Sets for PNN  

7.2.5 Confusion Matrix for 321 Total Training and 72 Independent Test Data Sets for 

ANFIS 

TABLE 7.8  

Confusion Matrix for 321 Total Training Data Sets for ANFIS   

 

TABLE 7.9 

Confusion Matrix for 72 Independent Test Data Sets for ANFIS   

 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 12 1 0 0 0 1 

SP 1 8 0 0 0 0 

UV 0 0 10 0 0 0 

OV 0 0 0 8 0 0 

OL 0 0 0 0 10 2 

N 0 0 0 0 0 19 

  

TARGET CLASS 

 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 49 0 0 0 0 0 

SP 1 41 1 0 0 0 

UV 0 0 26 0 0 0 

OV 0 0 2 28 0 1 

OL 0 0 1 2 30 5 

N 0 0 0 0 0 134 

  

TARGET CLASS 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 12 0 0 0 0 0 

SP 1 9 0 0 0 0 

UV 0 0 10 0 0 1 

OV 0 0 0 8 0 1 

OL 0 0 0 0 8 1 

N 0 0 0 0 2 19 

  

TARGET CLASS 



Ch. 7 Comparison Between MLPNN, SC_FIS, ANFIS, PNN, NBC and LDA for Induction Motor 
External Faults Identification 
 

98 
 

7.2.6 Confusion Matrix for 321 Total Training and 72 Independent Test Data Sets for 

NBC 

TABLE 7.10 

Confusion Matrix for 321 Total Training Data Sets for NBC   

TABLE7.11  

Confusion Matrix for 72 Independent Test Data Sets for NBC  

7.2.7 Confusion Matrix for 321 Total Training and 72 Independent Test Data Sets for 

LDA 

TABLE 7.12 

Confusion Matrix for 321 Total Training Data Sets for LDA 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 48 0 0 0 0 21 

SP 2 41 0 0 0 0 

UV 0 0 30 0 0 8 

OV 0 0 0 30 0 6 

OL 0 0 0 0 30 3 

N 0 0 0 0 0 102 

  

TARGET CLASS 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 11 0 0 0 0 3 

SP 2 9 0 0 0 0 

UV 0 0 10 0 0 2 

OV 0 0 0 8 0 1 

OL 0 0 0 0 10 2 

N 0 0 0 0 0 14 

  

TARGET CLASS 

 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 42 6 0 0 0 12 

SP 0 25 0 0 0 0 

UV 2 10 30 0 0 18 

OV 0 0 0 30 0 29 

OL 0 0 0 0 30 7 

N 6 0 0 0 0 74 

  

TARGET CLASS 
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TABLE 7.13 

Confusion Matrix for 72 Independent Test Data Sets for LDA  

 

 

7.2.8 Classifiers Performance Comparison Using Sensitivity, Specificity, Precision 

and F-measure   

MLPNN, SC_FIS, PNN, ANFIS, NBC and LDA are further compared with sensitivity, 

specificity, precision and F-measure statistical measures using confusion matrix. 

Table 7.14 and Table 7.15 show sensitivity, specificity, precision and F- measure 

comparison of all classifiers for total train and independent test data sets.  Results shows 

that MLPNN, PNN, SC_FIS and ANFIS achieve impressive results for train data 

sensitivity, specificity, precision and F-measure. Sensitivity, specificity and most 

importantly overall F-measure values of PNN and ANFIS are near or more than 90% for 

four test output conditions and comparable to MLPNN and SC_FIS, but MLPNN and 

SC_FIS performance are better in for all conditions. The PNN requires more hidden nodes 

than the MLPNN to reach comparable performance; this is because training of hidden 

nodes in PNN is unsupervised. The most advantage of SC_FIS and ANFIS faults 

identification over MLPNN is that faults heuristics extraction is also possible with good 

statistical measures.  

The MLPNN outperforms the other classifiers with respect to train and independent test 

data sets classification accuracy, sensitivity, false alarms, specificity and F-measure. The 

advantage of soft computing based fault identification classifier over prevalent 

conventional thermal based fault identification protection scheme is that it can detect any 

unseen external faults with high accuracy and produce better generalized results. 

O 

U 

T 

P 

U 

T 

C 

L 

A 

S 

S 

 

  VUB SP UV OV OL N 

VUB 11 1 0 0 0 2 

SP 0 4 0 0 0 0 

UV 1 4 10 0 0 3 

OV 0 0 0 8 0 3 

OL 0 0 0 0 10 2 

N 1 0 0 0 0 12 

  

TARGET CLASS 
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TABLE 7.14 

Statistical Parameters Comparison for Train Input Data Sets 

 

 

Out 

put 

Con

ditio

n 

LDA NBC PNN MLPNN SC_FIS ANFIS 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision  

(%) 

 

F-

mea

sure 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

 

F-

mea

sure 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

F-

mea

sure 

 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

F-

mea

sure 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

F-

mea

sure 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

F-

mea

sure 

VUB 84 91.3 70 0.76 96 91.73 69.6 0.81 100 100 100 1 100 100 100 1 100 98.86 94.3 0.97 98 100 100 0.99 

SP 61 100 100 0.76 100 99.17 95.4 0.98 100 100 100 1 100 100 100 1 100 100 100 1 100 99.63 95.3 0.98 

UV 100 87 50 0.67 100 96.91 79 0.88 96.67 100 100 0.98 100 100 100 1 100 98.6 88.2 0.96 87 100 100 0.93 

OV 100 87.4 50.8 0.67 100 97.67 83.3 0.91 100 100 100 1 100 100 100 1 96.7 99.64 96.7 0.97 93.3 98.94 90.3 0.92 

OL 100 97.7 81.1 0.9 100 98.82 90.9 0.95 100 99.7 93.8 0.97 100 100 100 1 100 99.29 93.8 0.97 100 96.68 79 0.88 

N 52.9 96.3 92.5 0.67 72.9 82.7 100 0.84 98.57 99.5 99.3 0.99 100 100 100 1 92.9 99.45 99.2 0.97 95.7 100 100 0.98 
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TABLE 7.15 

Statistical parameters Comparison for Independent Test Data Sets 

 

Outp

ut 

Con

ditio

n 

LDA NBC PNN MLPNN SC_FIS ANFIS 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

F-

mea

sure 

Sensi

tivity 

(%) 

Speci

ficity 

 (%) 

Prec

ision 

(%) 

F-

mea

sure 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

F-

mea

sure 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

F-

mea

sure 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

F-

mea

sure 

Sensi

tivity 

(%) 

Speci

ficity 

(%) 

Prec

ision 

(%) 

F-

mea

sure 

VUB 84.6 93.6 78.6 0.82 84.6 94.44 78.6 0.82 92.3 96.6 85.7 0.89 92.3 100 100 0.96 100 98.28 92.9 0.96 92.3 100 100 0.96 

SOP 44.4 100 100 0.62 100 96.36 81.8 0.9 88.9 98.4 88.9 0.89 100 100 90 0.95 100 100 100 1 100 98.28 90 0.95 

UV 100 84.91 55.6 0.72 100 96.3 83.3 0.91 100 100 100 1 100 100 100 1 100 98.36 90.9 0.95 100 98.24 91 0.95 

OV 100 94 72.7 0.84 100 98.18 88.9 0.94 100 100 100 1 100 100 100 1 100 100 100 1 100 98.31 89 0.94 

OL 100 95.74 83.3 0.91 100 96.3 83.3 0.91 100 96.8 83.3 0.91 100 98.38 100 1 100 100 100 1 80.8 98.31 89 0.85 

N 54.5 97.72 92.3 0.69 63.6 100 100 0.78 86.4 100 100 0.93 100 100 100 1 90.9 100 100 0.95 86 95.92 91 0.88 
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As in [1] neural networks are a promising alternative to various conventional classification 

methods. Since any classification procedure seeks a functional relationship between the 

group membership and the attributes of the object, accurate identification of this 

underlying function is must needed. Neural networks are flexible in modelling of real 

world complex relationships because of they can give extremely good nonlinear input 

output mapping. The major strength with neural network is its ability to extract the patterns 

and irregularities as well as detecting multi-dimensional nonlinear connection in data.  
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CHAPTER - 8 

Conclusions and Future Scope 

8.1 Conclusions 

A brief chapter-wise summary of the contents of this thesis is as follows. 

This study has focused on induction motor external faults identification using ANN and 

Fuzzy soft computing techniques and presented the need and advantages of such 

techniques in induction motor external fault identification in chapter 1.  

Chapter 2 has presented literature survey mainly related with induction motor faults 

identification and all work are broadly classified in three categories ANN based, fuzzy 

logic based and hybrid and other approaches. 

We have considered the most probable external faults OL, OV, UV SP and VUB in this 

study and all external faults are discussed in chapter 3. Three phase RMS voltage and RMS 

currents values are obtained using induction motor external faults simulation in 

MATLAB/SIMULINK environment at varying supply voltage and load. 174 training and 

46 testing data sets (patterns) are prepared for six output (five external faults and normal) 

conditions. Scatter plot visualization of the training data sets show that the problem is 

linearly nonseperable and complex. We have also used conventional and widely used LDA 

for external faults identification. The training and testing (unseen) classification accuracy 

obtained with LDA is 70.11% and 73.9% respectively.  

MLPNN and LM algorithm is used for the induction motor external faults identification in 

chapter 4. Three phase RMS voltages and RMS currents values obtained through 

simulation used as training and testing of MLPNN. Several MLPNN configurations are 

tested with growing neuron phenomena and the best generalized and well trained MLPNN 

configuration is evaluated using early stopping for generalisation. The total training and 

independent test data sets classification accuracies 98.9% and 97.8% are obtained  
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respectively using MLPNN. 

Real time input data sets are obtained practically for five external fault conditions 

simulated on operational induction motor using laboratory experimental setup and are 

discussed in chapter 5.  OL, OV, UV, SP of any phase, VUB and normal conditions are 

practically created with varied operating voltage and load. RMS values of three phase 

voltages and currents are logged for classifiers training and testing. A representative set of 

321 training and 72 independent test data sets is prepared for different classifier training 

and testing. 

SC_FIS, ANFIS, PNN and NBC are explained in detail in chapter 6. External faults 

identification using MLPNN, SC_FIS, PNN, ANFIS, LDA and NBC is discussed using 

experimentally obtained data sets.  

Chapter 7 has presented the performance comparison of MLPNN, SC_FIS, PNN, ANFIS, 

NBC and LDA classifiers using total classification accuracy, separate test data sets 

classification accuracy and average classification accuracy. Total classification accuracy 

for total training data sets and independent test data sets, and average classification 

accuracy obtained with MLPNN are 100%, 98.61, and 99.3% respectively. All classifiers 

are also compared using statistical measures like sensitivity, specificity, precision and F-

measure for train and independent test data sets and discussed. Besides generalized and 

accurate fault identification advantage of SC_FIS and ANFIS is that it allows insights in 

the form of linguistically interpretable rules which is not possible with conventional fault 

identification schemes. MLPNN outperforms all others in terms of classification accuracy 

(Table 7.1) and overall F-measure for training and testing data sets (Tables 7.14 & 7.15). 

The major contributions are briefly summarized as follows: 

 This study evaluates the potential of mainly ANN and fuzzy logic techniques for 

induction motor external faults identification.  

 Induction motor external faults simulation is used to simulate external faults 

alongwith normal operating conditions for varying operating voltage and load.  

 Scatter plot visualization of the obtained train data sets is done for different output 

classes using six input variables (three phase RMS voltages and currents). Plot 

displays input variable relations with respect to six output classes and found the six 

classes linearly non separable, overlapping and complex. Classification results are 
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also obtained with conventional LDA technique. 

 Real time data sets are obtained for five external faults and normal conditions at 

varying operating conditions for operational 3kW induction motor using 

experimental setup. 

 This study used MLPNN for the induction motor accurate fault identification with 

fast LM BP algorithm and early stopping for generalization. To find the best 

generalized and well trained MLPNN configuration validation subset accuracy, 

independent test set and train subset classification accuracy alongwith validation 

subset error are considered. Different MLPNN configurations are tested using 

growing neuron phenomena and the best generalized well trained MLPNN 

configuration. 

 Subtractive clustering based fuzzy inference system (SC_FIS) is used for external 

faults identification and the rules responsible for the five external faults and normal 

conditions are obtained. Best generalized FIS configuration with least rules is found 

by comparing average total classification accuracy and average test RMSE error 

using 10-times random subsampling for different FISs obtained with different 

cluster radius. High classification accuracy results are obtained for training as well 

as unseen patterns using SC_FIS without need of any iterative nonlinear parameter 

optimization like ANFIS with least rules. 

 This study attempted to find the best generalized and well trained neural network 

PNN configuration for induction motor external faults detection and classification. 

The results of PNN train and validation (subset of total train data sets) data sets 

classification accuracy are used against radial basis function spread to find the best 

generalization spread for PNN.  

 ANFIS is used for external faults identification. Best generalized ANFIS 

configuration with least rules is obtained using independent test data sets as 

checking data sets. 

 This study also attempted conventional LDA and probabilistic NBC for external 

faults identification alongwith neural network and fuzzy classifiers for statistical 

performance comparison.  

 This study has compared faults classification performance of classifiers using train 

and test classification accuracy and other statistical measures like sensitivity, 

specificity, precision and F-measure. 
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Induction Motors are a major part of industrial load and appears to various faults and 

abnormalities. Induction motor external faults identification is a complex and linearly non 

separable problem. Conventional fault identification schemes suffer from inaccurate fault 

identification. In conventional protective schemes relays, applied for one hazard may 

operate for others as some overlap found particularly in OL versus faults, unbalance 

voltages/currents and SP etc. It is also difficult to estimate negative sequence current for 

negative sequence protection. The current development of computer software based on 

intelligent systems components leads attention of relay engineers to use them in the 

diagnosis of faults in power system components such as induction motors. Neural network 

provide a natural framework for fault identification and it can approximate abnormal 

behaviour of dynamial systems through learning approach. Fuzzy logic can be used to 

provide a general heuristic solution to a particular problem. It can provide a heuristic 

output as a result of some complex computations by quantifying the actual numerical data 

into heuristic and linguistic terms.  

Real time input data sets for classifiers training are obtained through various external fault 

conditions practically simulated on induction motor. OL, OV, UV, SP of any phase, VUB 

and normal condition were practically created with varied operating voltage and load. 

RMS values of three phase voltage and currents were logged as feature vector of classifier. 

Performance of MLPNN PNN, SC_FIS, ANFIS, NBC and LDA classifiers were compared 

using total classification accuracy (Table 7.1), sensitivity, specificity, precision and F-

measure for training data sets  (Table 7.14)  and independent test data sets (Table 7.15). It 

is observed that MLPNN, SC_FIS, PNN and ANFIS results are found more accurate and 

better than conventional Well-known LDA and probabilistic approach Naïve bayes 

classifier. MLPNN and PNN show most impressive results with respect to training data 

sets accuracy 100 % & and 99.07% respectively. PNN can identify external faults with 

good amount of training and testing accuracy but requires as many hidden neurons as 

training patterns. Soft computing classifiers SC_FIS and ANFIS can provide heuristics 

behind faults in terms of rules besides high fault identification accuracy and other 

statistical performance measures. MLPNN and SC_FIS generalization performance found 

better based on independent test data sets classification accuracies (98.61% and 97.2% 

respectively) and other statistical measures for all six output conditions. It has been 

observed MLPNN performance outperforms to others in terms of all statistical 

performance measures for training and independent test data sets.  
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8.2 Future Scope 

1.  Till the date there is no AI based single methodology is available as in authors 

knowledge to detect all faults (external and internal), a comprehensive soft computing 

based fault identification scheme should be developed for identification for all external as 

well as internal faults at different load and operating voltage levels.  

2. The proposed fault identification scheme to be developed and test with instantaneous 

values of three phase and voltages, 

3. ANN or fuzzy based fault identification system to be develop for other power system 

components like, transformer, synchronous generator etc;  using simple input variables like 

RMS or instantaneous values of three phase voltages and currents which are readily 

available through measurement instruments. 

4. The reason of ANFIS little lower performance may be because of many nonlinear 

parameters are to modify and also the ratio of number of training patterns to total 

parameters is less.  External faults identification using ANFIS can be tested with selected 

features or other Adaptive neurofuzzy systems and with large data sets. 
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APPENDICES 

APPENDIX A: Training Data sets (Simulation) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

1 402.7 402.9 403.2 7.75 7.75 7.75 N 

2 399.9 400 400.3 7.78 7.78 7.78 N 

3 410.2 410.3 410.4 7.68 7.68 7.68 N 

4 413.8 414 414.1 7.65 7.65 7.65 N 

5 420 420.1 420.2 7.6 7.6 7.6 N 

6 423.4 423.8 424.1 7.6 7.58 7.58 N 

7 428.3 428.7 429 7.54 7.53 7.53 N 

8 432 432.4 432.7 7.52 7.51 7.51 N 

9 434.5 434.8 435 7.49 7.49 7.49 N 

10 438.3 438.5 438.6 7.47 7.47 7.47 N 

11 395.5 395.6 395.6 7.83 7.83 7.83 N 

12 391.7 391.9 392.2 7.87 7.86 7.87 N 

13 386.7 387 387.3 7.93 7.92 7.92 N 

14 381.9 382.1 382.3 7.99 7.97 7.99 N 

15 377.1 377.3 377.3 8.1 8.1 8.1 N 

16 367.4 367.4 367.4 8.2 8.2 8.2 N 

17 372 372.3 372.7 8.14 8.14 8.14 N 

18 363.4 363.8 364.1 8.29 8.27 8.28 N 

19 430.9 431.1 431.3 7.52 7.53 7.52 N 

20 366.1 366.2 366.3 8.22 8.22 8.22 N 

21 404 404.1 404.3 8.61 8.61 8.61 N 

22 406.4 406.7 406.8 8.57 8.57 8.57 N 

23 398.9 399.3 399.6 6.5 6.5 6.5 N 

24 399 399.3 399.5 7.13 7.12 7.12 N 

25 399 399.2 399.5 7.57 7.56 7.56 N 

26 403 410.3 407.3 7.15 7.94 8.09 N 

27 395.6 388.2 392.6 8.51 7.6 7.53 N 

28 405.7 397.7 401.7 7.55 7.41 8.37 N 

29 402.5 397.9 406 7.11 8.02 8.19 N 

30 403.6 407.6 411.8 7.5 7.33 8.33 N 

31 399.6 400 400.3 9 9 9 OL 

32 399.1 399.2 399.4 9.2 9.2 9.2 OL 

33 399.2 399.3 399.3 9.7 9.7 9.7 OL 

34 398.9 399.3 399.8 9.95 9.95 9.96 OL 

35 399.6 400.3 400 10.46 10.45 10.45 OL 

36 399.7 402.4 400 10.2 10.2 10.2 OL 

37 399.6 400.3 400 10.72 10.71 10.71 OL 

38 399.7 402.4 400 11 11 11 OL 

39 403.9 404.2 404.5 9.86 9.86 9.86 OL 

40 391.6 392 392.2 10.15 10.13 10.14 OL 
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APPENDIX A: Training Data Sets (Simulation) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

41 396.6 397.1 396.8 9.24 9.24 9.25 OL 

42 406.3 406.9 406.7 8.63 8.61 8.62 N 

43 399.7 400.3 400 11.25 11.25 11.25 OL 

44 399.8 400.2 400 11.56 11.55 11.56 OL 

45 400 399.6 400 11.84 11.82 11.83 OL 

46 399.7 400.3 400.1 12.11 12.11 12.11 OL 

47 399.8 400.2 400 12.4 12.4 12.4 OL 

48 400 399.7 400.3 12.67 12.66 12.67 OL 

49 399.9 400.1 400 12.95 12.95 12.96 OL 

50 399.7 400 400.3 9.32 9.32 9.32 OL 

51 441.8 442.1 442.4 8.02 8.03 8.02 OV 

52 443.1 443.3 443.6 8.01 8.02 8.01 OV 

53 444.8 445.2 445.6 8 8 8 OV 

54 446.8 447 447.2 7.98 7.99 7.98 OV 

55 444.2 444.6 445 7.44 7.444 7.43 OV 

56 451.8 451.9 452.1 7.38 7.4 7.4 OV 

57 456.5 456.8 457.2 7.35 7.35 7.37 OV 

58 471.5 471.5 471.6 7.34 7.25 7.36 OV 

59 474.8 475.2 475.5 7.37 7.26 7.37 OV 

60 444.3 444.6 444.8 7.44 7.44 7.44 OV 

61 455.2 455.6 455.9 7.39 7.39 7.38 OV 

62 468.9 469.1 469.2 7.34 7.34 7.34 OV 

63 477.2 477.7 478.1 7.33 7.32 7.31 OV 

64 479.6 480.1 480.5 7.32 7.31 7.31 OV 

65 489.6 489.9 490.2 7.93 7.86 7.84 OV 

66 452.8 453.2 453.5 6.38 6.4 6.4 OV 

67 452.7 453.2 453.5 9.12 9.17 9.12 OV 

68 446.6 447 447.4 7.42 7.43 7.42 OV 

69 453.1 453.2 453.2 8.13 8.12 8.12 OV 

70 443.2 443.3 443.6 6.4 6.4 6.4 OV 

71 439.7 440 440.2 7.46 7.46 7.46 OV 

72 442 442.1 442.3 7.46 7.46 7.46 OV 

73 445 445.8 446.2 7.43 7.43 7.43 OV 

74 449.1 449.5 449.8 7.41 7.41 7.41 OV 

75 452.8 453.2 453.5 7.39 7.38 7.39 OV 

76 458 458.1 458.2 7.37 7.36 7.38 OV 

77 461.3 461.7 462.1 7.37 7.35 7.37 OV 

78 467.4 467.4 467.9 7.37 7.33 7.35 OV 

79 472.6 472.8 472.8 7.36 7.34 7.35 OV 

80 482.3 482.5 482.8 7.34 7.34 7.3 OV 
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APPENDIX A: Training Data Sets (Simulation) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

81 361.1 361.3 361.4 8.3 8.3 8.3 UV 

82 357.3 357.6 357.9 8.37 8.35 8.36 UV 

83 352.4 352.7 353 8.48 8.46 8.47 UV 

84 342.6 343 343.2 8.67 8.66 8.67 UV 

85 336.7 336.8 337 8.8 8.8 8.8 UV 

86 330.4 330.7 330.9 8.9 8.91 8.92 UV 

87 323.2 323.3 323.4 9.13 9.124 9.13 UV 

88 318.2 318.4 318.6 9.24 9.23 9.23 UV 

89 312.1 312.3 312.5 9.44 9.43 9.43 UV 

90 306 306.2 306.3 9.6 9.61 9.6 UV 

91 293.7 294 294.1 10.1 10.1 10.1 UV 

92 355 355.2 355.4 8.41 8.4 8.41 UV 

93 345.4 345.4 345.4 8.6 8.6 8.6 UV 

94 350.2 350.3 350.3 7.93 7.93 7.93 UV 

95 340.3 340.5 340.6 9.76 9.75 9.76 UV 

96 330.4 330.7 330.9 9.9 9.89 9.9 UV 

97 352.4 352.7 353 9.32 9.31 9.32 UV 

98 306.1 306.2 306.3 13.25 13.24 13.25 UV 

99 342.8 343 343 6.94 6.94 6.94 UV 

100 355 355.2 355.4 10.16 10.15 10.15 UV 

101 284.4 400 362.8 0 16.75 16.75 SP 

102 286.8 402.9 365.3 0 16.65 16.65 SP 

103 305.4 416.4 377.8 0 16.13 16.13 SP 

104 273 391.9 355.2 0 17 17 SP 

105 256.6 379.7 343 0 17.45 17.45 SP 

106 268.4 400 361.5 0 18.83 18.83 SP 

107 252.2 400 358.9 0 21 21 SP 

108 302.2 400 363.6 0 14.1 14.1 SP 

109 369.2 399.3 400 11.7 0 11.7 SP 

110 371.1 305.1 400.1 14.12 0 14.12 SP 

111 371.1 275.5 400.2 18.7 0 18.7 SP 

112 370.3 260.9 400.2 20.84 0 20.84 SP 

113 371.4 288.1 400.2 16.73 0 16.73 SP 

114 374 291.2 403.1 16.67 0 16.67 SP 

115 386.1 277.9 392.1 16.99 0 16.99 SP 

116 352.2 263.3 379.9 17.28 0 17.28 SP 

117 399.7 368.2 283.1 17.26 17.26 0 SP 

118 402.6 371.1 287.1 17.2 17.2 0 SP 

119 416.1 384.1 305.6 16.7 16.7 0 SP 

120 391.6 360 272.7 17.46 17.46 0 SP 
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APPENDIX A: Training Data Sets (Simulation) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

121 379.5 347.4 256.9 17.77 17.77 0 SP 

122 399.7 366.9 268.4 19.34 19.34 0 SP 

123 399.8 364.8 252.7 21.45 21.45 0 SP 

124 399.7 368.5 319.1 12.14 12.14 0 SP 

125 399.9 368.9 361.7 14.61 14.61 0 SP 

126 409.6 389.5 400 9.46 7.25 6.96 VUB 

127 407.5 400 391.9 8.41 8.65 6.46 VUB 

128 409.6 400 389.5 8.54 8.9 6.14 VUB 

129 411.5 395.9 391.7 9.06 8.46 6.1 VUB 

130 411.4 391.7 396.1 9.41 7.83 6.45 VUB 

131 407.6 407.8 383.1 7.92 10 6.06 VUB 

132 407.5 395.9 396.2 8.74 7.99 6.75 VUB 

133 406.7 406.4 383.5 7.95 9.86 6.11 VUB 

134 409.7 392.8 390.4 9.2 8.4 6.11 VUB 

135 383.7 391.6 398.1 7.36 9.09 7.34 VUB 

136 394.1 399.7 405.9 7.25 8.77 7.4 VUB 

137 411.2 400 387.6 8.78 9.14 5.82 VUB 

138 413 385.1 400.2 10.14 7.13 6.75 VUB 

139 409.3 385.2 404.3 9.9 6.12 7.38 VUB 

140 416.5 391.7 389.8 9.91 8.62 5.49 VUB 

141 390 400 390.5 7.02 8.62 8 VUB 

142 360.5 400 361 5.07 11.53 9.19 VUB 

143 351.1 351.3 400.1 9.74 4.64 12.57 VUB 

144 399.9 370.4 370.5 10.54 8.72 5.62 VUB 

145 364.3 364.6 400.4 9.01 5.27 11.14 VUB 

146 357.1 399.7 356.9 11.95 9.41 4.88 VUB 

147 354.1 364.6 390.3 8.1 6.31 11.17 VUB 

148 351 320.2 370.6 11.62 4.57 10.93 VUB 

149 364.6 392.9 371.8 9.91 9.13 5.73 VUB 

150 389.5 361.5 372.1 10.47 7.75 6.73 VUB 

151 368.5 387.5 356.2 6.82 10.76 7.66 VUB 

152 383.9 361.2 317.8 7 7.71 9.99 VUB 

153 385.7 367.5 373.8 9.6 7.8 7.1 VUB 

154 404.4 349.2 387.3 12.72 6.48 7.61 VUB 

155 367.4 373.7 349.3 7.96 10.32 6.99 VUB 

156 358.9 382.8 343.3 6.74 11.61 7.83 VUB 

157 414.1 400 414.7 8.99 6.65 7.65 VUB 

158 426.8 400 426.9 10.06 5.86 7.71 VUB 

159 399.9 414.4 414.5 6.66 7.64 8.98 VUB 

160 399.8 423.2 423.3 6.1 7.67 9.73 VUB 
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APPENDIX A: Training Data Sets (Simulation) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

161 410.9 411.3 400.3 7.66 8.71 6.88 VUB 

162 446.7 426.8 420.9 9.15 8.7 5.24 VUB 

163 440.9 433.1 408.3 8.3 10.04 5.16 VUB 

164 414.2 426.8 441.2 7.2 6.31 9.74 VUB 

165 429.8 423.8 453.3 8.82 4.95 9.36 VUB 

166 436.1 462.4 426.9 5.18 10.36 7.94 VUB 

167 420.3 408.3 429 8.92 5.98 8.24 VUB 

168 418.8 434.8 425.2 6.23 8.28 8.34 VUB 

169 425.6 419.6 441.1 8.51 5.72 8.72 VUB 

170 427.3 433.7 447.3 7.48 6.26 9.06 VUB 

171 425.9 420.1 432.7 6.6 7.93 8.09 VUB 

172 395.5 394 382.3 8.1 8.95 6.83 VUB 

173 397.7 362.1 404 11.25 4.98 8.95 VUB 

174 427.6 399.2 408.2 10.03 7.67 6.02 VUB 
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APPENDIX B:  Testing Data Sets (Simulation) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

1 389.4 389.5 389.6 7.9 7.9 7.9 N 

2 384.2 384.6 384.9 7.96 7.94 7.9 N 

3 379.6 379.7 379.7 8 8 8 N 

4 405.1 405.4 405.6 7.74 7.72 7.73 N 

5 398.3 394.4 396.1 8.15 7.72 7.6 N 

6 369.7 369.9 370 8.16 8.16 8.16 N 

7 399.7 400 400.2 9.45 9.43 9.44 OL 

8 399.7 400 400.2 9.57 9.56 9.57 OL 

9 399.7 400 400.3 9.82 9.81 9.81 OL 

10 399.6 400 400.3 10.1 10.1 10.1 OL 

11 399.7 400 400 10.33 10.32 10.33 OL 

12 399.8 400 400.2 9.19 9.19 9.19 OL 

13 443.2 443.4 443.5 7.44 7.45 7.44 OV 

14 448.1 448.2 448.5 7.42 7.42 7.42 OV 

15 450.3 450.7 451.1 7.42 7.41 7.41 OV 

16 459.6 460 460.2 7.38 7.37 7.37 OV 

17 470.2 470.3 470.3 7.34 7.34 7.34 OV 

18 465 465.4 465.7 7.36 7.35 7.35 OV 

19 347.6 347.8 348 8.55 8.54 8.54 UV 

20 325.5 326.8 326 9.04 9.03 9.04 UV 

21 332.8 333.1 333.4 8.86 8.85 8.86 UV 

22 340.4 340.5 340.6 8.7 8.7 8.7 UV 

23 320.6 320.9 321.1 9.17 9.16 9.1 UV 

24 296.6 410.3 372.2 0 16.4 16.4 SP 

25 292.1 406.6 368.8 0 16.54 16.54 SP 

26 250.4 374.8 338.3 0 17.66 17.66 SP 

27 300.2 412.7 374.6 0 16.26 16.26 SP 

28 258 400 360 0 20.26 20.26 SP 

29 370.6 265.7 400.4 20.1 0 20.1 SP 

30 380.8 301.1 410.5 16.4 0 16.4 SP 

31 377.3 295.3 406.8 16.5 0 16.5 SP 

32 368.5 284 397 16.84 0 16.84 SP 

33 361.5 274.8 389.7 17.1 0 17.1 SP 

34 410 378.3 297.1 17 17 0 SP 

35 392.5 361.5 276.8 17 17 0 SP 

36 384.3 352.4 263.6 17.6 17.6 0 SP 

37 399.8 368.7 292.7 15.9 15.9 0 SP 

38 399.8 365 255.3 21 21 0 SP 

39 385.5 412.9 400 8.98 9.4 5.45 VUB 

40 407.9 405.8 385.2 9.67 6.14 8.01 VUB 
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APPENDIX B: Testing Data Sets (Simulation) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

41 377.5 400 378.1 6.11 9.8 8.4 VUB 

42 365.9 389.9 355.5 6.4 11.04 8.02 VUB 

43 355.1 376.6 358.7 6.53 9.81 8.8 VUB 

44 410.9 411.3 400.3 7.66 8.71 6.88 VUB 

45 430.2 420.4 450.1 5 9.14 8.98 VUB 

46 423.6 438.5 433.8 6.37 7.82 8.52 VUB 
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APPENDIX C: Training Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

1 410.161 407.756 408.882 4.636 4.527 4.759 N 

2 409.854 407.577 408.549 4.623 4.541 4.759 N 

3 410.213 407.833 408.908 4.623 4.527 4.759 N 

4 410.213 407.756 408.882 4.677 4.568 4.814 N 

5 410.187 408.063 409.138 4.568 4.445 4.705 N 

6 410.571 408.677 409.65 4.5 4.377 4.636 N 

7 414.051 411.799 413.027 4.5 4.377 4.609 N 

8 419.68 417.351 418.784 4.486 4.364 4.595 N 

9 424.311 421.957 423.671 4.5 4.336 4.582 N 

10 425.002 422.955 424.49 4.486 4.309 4.582 N 

11 424.746 423.057 424.362 4.473 4.309 4.595 N 

12 427.765 425.207 427.1 4.5 4.309 4.568 N 

13 429.633 427.202 429.019 4.5 4.309 4.568 N 

14 433.215 430.682 433.113 4.5 4.295 4.582 N 

15 434.623 431.987 434.162 4.5 4.295 4.555 N 

16 436.516 433.957 435.723 4.486 4.323 4.568 N 

17 439.177 436.67 438.384 4.5 4.309 4.568 N 

18 444.295 441.762 443.45 4.5 4.323 4.582 N 

19 443.911 441.506 443.092 4.5 4.323 4.582 N 

20 444.653 442.299 443.988 4.5 4.309 4.582 N 

21 445.548 442.913 444.653 4.5 4.323 4.568 N 

22 447.032 444.525 446.111 4.5 4.336 4.595 N 

23 450.845 448.44 450.103 4.527 4.336 4.595 N 

24 451.51 448.772 450.538 4.527 4.35 4.595 N 

25 451.638 448.9 450.64 4.527 4.35 4.595 N 

26 453.378 450.589 452.483 4.541 4.35 4.609 N 

27 454.427 451.92 453.915 4.555 4.35 4.609 N 

28 448.644 446.035 447.902 4.5 4.309 4.568 N 

29 442.248 439.74 441.736 4.486 4.282 4.555 N 

30 420.089 416.968 419.143 4.486 4.309 4.527 N 

31 420.115 416.814 419.091 4.5 4.309 4.527 N 

32 417.428 414.793 416.609 4.473 4.295 4.541 N 

33 412.618 410.699 411.825 4.459 4.336 4.595 N 

34 412.311 410.699 411.876 4.459 4.323 4.595 N 

35 412.388 410.801 411.978 4.459 4.323 4.609 N 

36 406.861 404.609 406.016 4.473 4.336 4.582 N 

37 403.355 401.104 401.897 4.459 4.364 4.595 N 

38 402.409 400.08 400.873 4.473 4.377 4.595 N 

39 395.986 393.351 394.656 4.514 4.405 4.609 N 

40 392.276 389.717 390.997 4.541 4.432 4.65 N 
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APPENDIX C: Training Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

41 389.18 386.365 387.517 4.568 4.473 4.664 N 

42 388.617 385.291 386.672 4.595 4.5 4.664 N 

43 387.107 384.242 385.623 4.582 4.473 4.677 N 

44 385.291 382.476 384.088 4.609 4.486 4.705 N 

45 384.472 381.402 383.014 4.609 4.5 4.691 N 

46 382.169 379.355 380.685 4.623 4.514 4.732 N 

47 380.404 377.768 378.92 4.623 4.527 4.732 N 

48 379.508 376.642 378.05 4.636 4.527 4.745 N 

49 378.382 375.491 376.847 4.664 4.555 4.759 N 

50 378.178 375.363 376.591 4.65 4.555 4.759 N 

51 442.478 439.663 441.736 4.35 4.145 4.405 N 

52 444.064 441.199 443.092 4.35 4.173 4.391 N 

53 446.751 443.757 446.035 4.364 4.159 4.405 N 

54 448.184 444.883 447.416 4.377 4.159 4.405 N 

55 450.973 447.775 450.129 4.391 4.186 4.432 N 

56 452.738 450.001 452.175 4.391 4.2 4.473 N 

57 439.791 436.926 439.228 4.336 4.132 4.377 N 

58 436.26 433.395 435.544 4.309 4.132 4.364 N 

59 431.22 428.738 430.861 4.295 4.118 4.377 N 

60 431.143 428.891 430.938 4.295 4.118 4.377 N 

61 401.052 397.777 399.415 4.295 4.186 4.364 N 

62 401.308 398.033 399.62 4.309 4.2 4.377 N 

63 401.283 397.982 399.594 4.309 4.186 4.377 N 

64 401.18 397.88 399.543 4.323 4.2 4.377 N 

65 426.614 424.465 426.64 3.968 3.805 4.05 N 

66 426.537 424.337 426.563 3.982 3.818 4.05 N 

67 403.458 401.385 402.895 3.927 3.832 4.036 N 

68 396.728 393.76 395.372 3.968 3.873 4.009 N 

69 394.425 391.022 392.609 3.982 3.9 3.995 N 

70 389.82 386.493 388.105 3.995 3.914 4.023 N 

71 387.082 383.372 385.137 4.023 3.927 4.036 N 

72 384.139 380.864 382.399 4.036 3.941 4.05 N 

73 378.766 375.363 376.975 4.05 3.968 4.077 N 

74 377.052 374.212 375.593 4.677 4.568 4.773 N 

75 377.436 374.109 375.721 4.677 4.568 4.745 N 

76 377.461 374.237 375.619 4.677 4.582 4.745 N 

77 447.109 444.346 447.135 4.05 3.832 4.077 N 

78 444.806 442.555 444.499 3.995 3.832 4.064 N 

79 444.551 441.429 444.039 4.036 3.832 4.036 N 

80 423.364 421.42 422.264 3.886 3.791 3.982 N 
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APPENDIX C: Training Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

81 422.904 421.445 422.443 3.886 3.791 4.009 N 

82 416.405 415.304 416.149 3.818 3.723 3.968 N 

83 417.531 415.458 416.763 3.573 3.477 3.655 N 

84 417.3 415.407 416.712 3.573 3.477 3.655 N 

85 417.275 415.381 416.661 3.559 3.464 3.655 N 

86 416.405 414.614 415.842 3.791 3.695 3.886 N 

87 416.686 414.869 416.123 3.573 3.464 3.668 N 

88 416.865 414.972 416.302 3.573 3.464 3.668 N 

89 416.942 414.972 416.379 3.586 3.464 3.668 N 

90 416.865 414.869 416.354 3.559 3.45 3.641 N 

91 417.428 415.484 417.07 3.273 3.15 3.327 N 

92 418.375 416.302 417.889 2.632 2.495 2.632 N 

93 410.494 408.191 409.317 4.895 4.786 5.045 N 

94 410.724 408.37 409.522 4.895 4.773 5.032 N 

95 410.468 408.345 409.343 4.868 4.745 5.018 N 

96 454.504 451.05 453.992 4.5 4.241 4.5 N 

97 454.785 451.843 454.785 4.445 4.173 4.486 N 

98 455.22 451.408 454.734 4.527 4.241 4.5 N 

99 455.297 451.306 455.092 4.555 4.241 4.5 N 

100 455.451 451.51 454.964 4.541 4.241 4.5 N 

101 406.707 410.213 407.347 3.995 4.214 4.118 N 

102 411.876 408.217 405.709 4.05 3.886 4.295 N 

103 406.886 411.031 407.807 3.941 4.214 4.064 N 

104 412.695 409.701 408.191 4.036 3.886 4.2 N 

105 412.311 409.343 407.859 4.241 4.091 4.391 N 

106 412.618 411.134 410.903 4.486 4.391 4.514 N 

107 412.234 410.98 410.776 4.473 4.405 4.5 N 

108 407.219 405.888 405.658 4.473 4.391 4.514 N 

109 407.296 406.221 405.709 4.323 4.268 4.377 N 

110 407.705 405.146 403.023 4.2 4.105 4.377 N 

111 407.577 405.76 405.735 4.173 4.077 4.214 N 

112 407.577 405.658 405.658 4.173 4.105 4.227 N 

113 406.707 404.302 404.481 2.918 2.836 2.986 N 

114 407.04 404.532 404.686 2.918 2.836 3 N 

115 406.375 402.05 398.468 2.864 2.686 3.177 N 

116 406.042 404.123 404.072 2.905 2.85 2.973 N 

117 419.859 418.375 420.064 2.7 2.55 2.605 N 

118 419.833 418.324 419.91 2.714 2.536 2.605 N 

119 421.676 420.115 421.778 2.414 2.264 2.305 N 

120 414.383 413.078 413.974 2.659 2.523 2.55 N 
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APPENDIX C: Training Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

121 408.089 406.426 406.989 2.591 2.427 2.509 N 

122 407.142 404.865 405.198 2.591 2.4 2.523 N 

123 404.507 402.588 403.56 2.223 2.059 2.073 N 

124 412.336 410.776 411.39 2.291 2.155 2.168 N 

125 403.611 401.411 402.588 2.577 2.386 2.468 N 

126 402.895 399.927 401.155 2.673 2.441 2.564 N 

127 401.922 399.338 400.31 2.768 2.55 2.673 N 

128 395.219 392.506 394.144 4.036 3.886 3.777 N 

129 395.116 392.378 393.99 4.036 3.886 3.75 N 

130 396.37 394.528 395.858 3.941 3.777 3.709 N 

131 401.667 399.799 401.052 3.927 3.777 3.695 N 

132 408.831 406.912 408.268 3.927 3.777 3.695 N 

133 412.899 411.031 412.285 3.914 3.764 3.695 N 

134 414.767 413.206 414.255 3.914 3.764 3.695 N 

135 415.97 414.204 415.407 3.927 3.764 3.709 N 

136 407.859 405.633 406.835 3.914 3.777 3.682 N 

137 404.404 403.048 403.816 3.9 3.764 3.709 N 

138 416.021 414.153 415.739 2.536 2.318 2.345 N 

139 416.891 415.535 417.07 2.373 2.127 2.223 N 

140 408.242 407.04 408.754 2.236 2.018 2.127 N 

141 409.547 407.347 408.575 4.991 4.841 5.141 OL 

142 409.65 407.372 408.473 4.964 4.841 5.127 OL 

143 410.468 407.526 409.138 4.991 4.841 5.1 OL 

144 410.494 407.91 409.317 4.977 4.841 5.1 OL 

145 409.803 407.833 408.959 4.964 4.827 5.127 OL 

146 410.034 407.91 408.908 4.964 4.841 5.127 OL 

147 409.854 407.833 408.78 4.964 4.841 5.141 OL 

148 409.522 407.577 408.549 5.127 5.005 5.318 OL 

149 409.445 407.5 408.524 5.291 5.168 5.482 OL 

150 409.266 407.424 408.242 5.277 5.168 5.482 OL 

151 409.061 407.193 408.063 5.291 5.168 5.482 OL 

152 409.471 407.424 408.396 5.291 5.168 5.468 OL 

153 409.931 407.91 408.857 4.964 4.841 5.114 OL 

154 409.215 407.372 408.242 4.95 4.827 5.114 OL 

155 409.522 407.372 408.549 4.964 4.827 5.1 OL 

156 409.547 407.372 408.575 4.95 4.827 5.1 OL 

157 409.547 407.296 408.524 4.964 4.827 5.086 OL 

158 409.419 407.193 408.37 4.95 4.827 5.1 OL 

159 409.24 407.245 408.294 4.936 4.814 5.086 OL 

160 409.496 407.449 408.601 4.95 4.814 5.086 OL 
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APPENDIX C: Training Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

161 409.599 407.398 408.626 4.964 4.814 5.086 OL 

162 410.059 408.063 409.24 5.195 5.059 5.345 OL 

163 410.008 407.807 409.01 5.059 4.923 5.209 OL 

164 415.356 413.795 414.614 5.305 5.223 5.523 OL 

165 415.228 413.616 414.511 5.414 5.318 5.632 OL 

166 415.125 413.513 414.409 5.536 5.441 5.768 OL 

167 414.972 413.437 414.255 5.536 5.441 5.768 OL 

168 414.818 413.257 414.102 5.536 5.441 5.768 OL 

169 414.793 413.181 414.153 5.727 5.632 5.959 OL 

170 414.793 413.104 414.051 5.727 5.645 5.959 OL 

171 458.828 456.679 458.265 4.568 4.377 4.664 OV 

172 459.007 456.576 458.342 4.582 4.377 4.65 OV 

173 458.572 455.809 458.009 4.582 4.35 4.623 OV 

174 461.361 458.265 461.054 4.555 4.268 4.582 OV 

175 462.231 459.033 461.643 4.555 4.295 4.582 OV 

176 464.764 461.796 464.534 4.595 4.309 4.609 OV 

177 462.487 459.033 462.231 4.568 4.282 4.568 OV 

178 462.717 459.135 462.206 4.595 4.295 4.595 OV 

179 455.86 453.352 455.451 4.405 4.2 4.486 OV 

180 456.909 454.248 456.679 4.432 4.214 4.5 OV 

181 458.521 455.144 457.856 4.459 4.227 4.486 OV 

182 459.238 456.116 458.623 4.459 4.227 4.5 OV 

183 460.107 457.523 459.852 4.459 4.227 4.514 OV 

184 460.363 457.805 460.005 4.459 4.227 4.527 OV 

185 460.619 458.214 460.338 4.459 4.227 4.541 OV 

186 460.594 458.112 460.235 4.459 4.241 4.527 OV 

187 460.389 457.805 459.98 4.459 4.227 4.514 OV 

188 460.261 457.651 459.8 4.459 4.241 4.514 OV 

189 460.312 457.702 459.749 4.459 4.241 4.514 OV 

190 460.875 457.856 460.466 4.486 4.227 4.514 OV 

191 461.719 458.7 461.157 4.486 4.241 4.527 OV 

192 462.103 459.365 461.412 4.473 4.255 4.527 OV 

193 462.513 459.314 461.899 4.5 4.241 4.5 OV 

194 457.37 456.193 457.856 4.077 3.914 4.227 OV 

195 457.958 456.781 458.393 4.105 3.927 4.227 OV 

196 464.995 462.922 465.276 4.214 3.995 4.282 OV 

197 465.916 463.536 466.069 4.227 3.982 4.282 OV 

198 465.711 463.383 465.993 4.227 3.995 4.282 OV 

199 457.139 453.352 456.73 4.555 4.255 4.527 OV 

200 460.415 457.063 459.749 4.555 4.282 4.555 OV 
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APPENDIX C: Training Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

201 375.951 373.649 374.391 4.036 3.995 4.145 UV 

202 376.028 373.725 374.365 4.036 3.995 4.145 UV 

203 376.054 372.446 374.032 4.064 4.009 4.105 UV 

204 376.719 374.212 375.44 4.664 4.568 4.786 UV 

205 376.131 373.29 374.314 4.05 3.995 4.132 UV 

206 376.233 372.6 374.288 4.077 3.995 4.105 UV 

207 373.265 370.962 371.96 4.691 4.595 4.827 UV 

208 373.521 371.013 372.19 4.691 4.582 4.814 UV 

209 373.674 371.039 372.395 4.705 4.595 4.8 UV 

210 373.7 371.192 372.472 4.691 4.582 4.814 UV 

211 373.495 371.064 372.19 4.691 4.595 4.814 UV 

212 373.418 370.757 371.985 4.677 4.582 4.8 UV 

213 373.316 370.706 371.832 4.691 4.595 4.814 UV 

214 370.578 367.789 368.838 4.718 4.623 4.827 UV 

215 366.433 363.695 364.796 4.745 4.664 4.882 UV 

216 363.593 361.162 362.211 4.786 4.691 4.936 UV 

217 363.849 361.623 362.825 4.786 4.677 4.95 UV 

218 363.67 361.572 362.876 4.786 4.664 4.95 UV 

219 370.45 367.38 368.736 4.745 4.65 4.841 UV 

220 376.77 373.086 374.647 4.677 4.582 4.732 UV 

221 362.8 359.371 361.367 4.732 4.609 4.8 UV 

222 362.723 358.834 361.111 4.745 4.609 4.786 UV 

223 362.467 358.936 361.111 4.732 4.595 4.8 UV 

224 362.365 358.808 361.111 4.745 4.609 4.8 UV 

225 362.646 359.09 361.367 4.732 4.609 4.8 UV 

226 374.877 371.397 372.446 4.05 4.036 4.118 UV 

227 371.832 368.429 369.427 4.077 4.036 4.132 UV 

228 365.051 362.109 362.953 4.118 4.091 4.2 UV 

229 364.949 361.853 362.749 4.132 4.105 4.214 UV 

230 373.239 370.783 371.934 4.05 3.995 4.145 UV 

231 349.699 402.127 337.264 0.027 4.105 4.036 SP 

232 367.687 416.149 359.448 0.491 3.955 4.009 SP 

233 350.057 388.975 308.018 1.418 6.668 6.668 SP 

234 323.191 386.98 258.481 0.041 8.468 8.536 SP 

235 355.303 399.62 317.945 0.955 6.027 6.082 SP 

236 339.157 398.647 290.849 0 6.805 6.859 SP 

237 339.029 398.519 290.67 0.014 6.805 6.859 SP 

238 344.71 403.227 298.013 0.055 6.641 6.695 SP 

239 343.609 403.125 297.425 0.014 6.682 6.736 SP 

240 377.308 412.797 349.981 1.582 5.264 5.277 SP 
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APPENDIX C: Training Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

241 351.209 411.543 309.527 0.014 6.45 6.491 SP 

242 362.416 419.936 339.362 0.041 5.1 5.155 SP 

243 362.262 419.833 339.413 0 5.1 5.141 SP 

244 362.288 419.808 339.234 0 5.1 5.155 SP 

245 322.398 402.306 243.078 0.668 11.673 11.768 SP 

246 407.731 343.43 354.484 4.036 0.041 4.145 SP 

247 407.5 345.989 356.173 4.023 0.491 4.159 SP 

248 407.731 343.43 354.484 4.036 0.041 4.145 SP 

249 407.5 345.989 356.173 4.023 0.491 4.159 SP 

250 262.754 326.005 388.924 8.468 0.136 8.318 SP 

251 260.963 324.88 388.643 8.577 0.123 8.441 SP 

252 297.246 344.044 400.694 6.818 0.314 6.682 SP 

253 327.157 361.162 406.042 6.068 1.132 5.932 SP 

254 299.702 345.452 405.198 6.845 0.095 6.723 SP 

255 300.06 345.528 405.325 6.845 0.095 6.709 SP 

256 311.6 353.025 413.641 6.668 0.095 6.505 SP 

257 355.891 375.209 422.111 4.909 0.859 4.773 SP 

258 340.897 363.951 421.65 5.318 0.068 5.182 SP 

259 348.189 357.785 411.211 4.145 4.105 0.055 SP 

260 324.035 345.58 397.752 4.609 4.555 0.068 SP 

261 323.677 345.273 397.445 4.609 4.541 0.068 SP 

262 392.353 293.945 343.277 7.514 7.336 0.941 SP 

263 391.201 266.08 327.669 8.455 8.25 0.027 SP 

264 401.462 327.285 361.827 6.014 5.85 1.282 SP 

265 400.234 293.228 340.897 7.036 6.859 0.014 SP 

266 400.31 293.203 340.872 7.036 6.845 0.014 SP 

267 406.349 302.44 347.115 6.832 6.641 0.027 SP 

268 406.477 302.235 346.654 6.859 6.682 0 SP 

269 414.46 326.415 362.851 6.273 6.082 0.723 SP 

270 413.897 312.879 353.384 6.668 6.477 0.014 SP 

271 421.829 351.516 371.653 5.073 4.909 0.559 VUB 

272 375.184 409.01 376.642 3.218 5.686 4.841 VUB 

273 397.726 410.238 402.409 3.791 4.582 4.05 VUB 

274 397.547 410.289 402.204 3.777 4.595 4.064 VUB 

275 396.856 410.187 401.641 3.75 4.609 4.05 VUB 

276 395.423 410.136 400.694 3.723 4.65 4.064 VUB 

277 394.067 409.906 399.722 3.695 4.705 4.05 VUB 

278 394.246 410.008 399.927 3.695 4.705 4.064 VUB 

279 384.139 409.88 384.037 3.259 5.1 4.527 VUB 

280 358.117 409.087 362.237 2.632 6.232 4.936 VUB 
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APPENDIX C: Training Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

281 375.542 409.701 383.73 3.191 5.441 4.309 VUB 

282 386.417 410.366 393.862 3.464 5.005 4.118 VUB 

283 388.08 410.034 395.193 3.518 4.923 4.091 VUB 

284 388.182 410.008 395.219 3.532 4.923 4.091 VUB 

285 388.694 410.366 395.551 3.532 4.909 4.105 VUB 

286 388.719 410.392 395.577 3.518 4.909 4.091 VUB 

287 388.515 410.213 395.474 3.518 4.909 4.091 VUB 

288 412.157 407.577 404.609 4.064 3.859 4.377 VUB 

289 412.029 404.021 398.57 4.036 3.695 4.595 VUB 

290 412.336 404.276 398.698 4.036 3.695 4.609 VUB 

291 412.26 405.402 400.49 4.036 3.75 4.541 VUB 

292 412.285 406.119 401.641 4.036 3.777 4.486 VUB 

293 412.439 407.142 403.714 4.036 3.805 4.405 VUB 

294 412.797 406.4 402.076 4.036 3.764 4.486 VUB 

295 398.084 410.417 402.69 3.736 4.5 4.009 VUB 

296 396.216 410.417 401.564 3.682 4.568 3.995 VUB 

297 395.884 410.571 401.232 3.682 4.595 4.009 VUB 

298 395.014 410.622 400.643 3.641 4.623 4.009 VUB 

299 393.555 410.673 399.671 3.6 4.677 4.009 VUB 

300 391.867 410.392 398.289 3.573 4.732 4.023 VUB 

301 390.946 410.52 397.726 3.545 4.773 4.023 VUB 

302 412.311 405.684 401.308 4.009 3.709 4.459 VUB 

303 412.515 404.225 398.724 3.995 3.641 4.555 VUB 

304 411.492 389.692 380.992 4.132 3.123 5.168 VUB 

305 410.724 368.045 362.109 4.691 2.482 5.945 VUB 

306 410.238 361.904 357.324 4.923 2.345 6.205 VUB 

307 411.85 397.342 391.432 4.132 3.45 4.841 VUB 

308 411.978 402.076 395.705 4.186 3.791 4.841 VUB 

309 407.065 399.85 394.425 4.173 3.886 4.705 VUB 

310 406.912 401.001 396.319 4.173 3.941 4.636 VUB 

311 406.707 396.958 390.894 4.173 3.805 4.814 VUB 

312 406.17 391.79 384.216 4.227 3.627 5.059 VUB 

313 406.093 388.438 379.917 4.268 3.518 5.236 VUB 

314 407.27 395.679 388.361 4.186 3.709 4.95 VUB 

315 395.73 405.658 399.082 3.9 4.514 4.118 VUB 

316 393.351 405.581 397.726 3.859 4.623 4.132 VUB 

317 392.557 405.607 397.035 3.818 4.65 4.118 VUB 

318 389.282 405.633 394.732 3.75 4.773 4.145 VUB 

319 381.657 405.274 388.745 3.559 5.059 4.186 VUB 

320 373.521 404.686 381.657 3.368 5.359 4.295 VUB 

321 372.165 404.686 380.48 3.341 5.427 4.323 VUB 
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APPENDIX D: Testing Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

1 410.571 408.268 409.445 4.568 4.459 4.691 N 

2 421.215 419.373 420.447 4.473 4.336 4.595 N 

3 431.296 429.045 430.785 4.486 4.309 4.582 N 

4 446.802 444.295 445.983 4.5 4.336 4.582 N 

5 453.583 450.717 452.534 4.555 4.364 4.609 N 

6 388.873 385.495 386.852 4.582 4.486 4.65 N 

7 377.436 374.263 375.644 4.677 4.568 4.759 N 

8 426.435 424.439 426.486 3.968 3.805 4.05 N 

9 403.637 401.462 403.099 3.941 3.818 4.036 N 

10 381.862 378.74 379.866 4.023 3.982 4.077 N 

11 422.75 421.317 422.239 3.873 3.791 4.009 N 

12 417.223 415.304 416.891 3.341 3.205 3.382 N 

13 418.298 416.302 417.863 2.618 2.495 2.645 N 

14 410.187 408.012 409.164 4.855 4.732 5.005 N 

15 410.366 407.961 409.24 4.895 4.773 5.045 N 

16 454.734 450.845 454.632 4.541 4.214 4.5 N 

17 400.055 405.94 401.769 4.036 4.391 4.173 N 

18 406.886 403.586 402.409 2.905 2.782 3.082 N 

19 407.168 404.711 404.839 2.932 2.836 3 N 

20 406.937 404.788 405.53 2.591 2.414 2.495 N 

21 403.56 402.562 403.048 3.886 3.764 3.709 N 

22 411.134 410.571 411.85 2.277 2.086 2.182 N 

23 410.059 407.91 409.036 4.964 4.841 5.127 OL 

24 409.394 407.398 408.319 5.291 5.168 5.482 OL 

25 409.752 407.526 408.729 4.964 4.827 5.1 OL 

26 409.496 407.449 408.575 4.95 4.827 5.086 OL 

27 409.65 407.577 408.703 4.936 4.814 5.086 OL 

28 409.599 407.398 408.549 5.291 5.168 5.468 OL 

29 414.818 413.309 414.025 5.536 5.441 5.768 OL 

30 414.895 413.257 414.102 5.755 5.659 5.986 OL 

31 415.049 413.283 414.23 5.768 5.659 5.986 OL 

32 415.1 413.283 414.46 5.741 5.632 5.945 OL 

33 458.803 456.602 458.163 4.555 4.377 4.65 OV 

34 464.713 461.489 464.381 4.582 4.295 4.609 OV 

35 460.44 457.856 460.031 4.459 4.241 4.527 OV 

36 462.103 459.365 461.412 4.473 4.255 4.527 OV 

37 466.555 465.046 466.683 4.186 4.009 4.323 OV 

38 466.223 464.688 465.941 4.173 4.036 4.295 OV 

39 466.325 464.713 465.993 4.173 4.023 4.295 OV 

40 462.769 460.952 462.462 4.132 3.968 4.241 OV 
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APPENDIX D: Testing Data Sets (Experiment) 

Sr. No. VRY VYB VBR IR IY IB Target 

Output  

41 376.284 373.981 374.544 4.023 3.995 4.145 UV 

42 373.495 371.013 372.011 4.677 4.595 4.814 UV 

43 373.444 370.757 371.985 4.705 4.595 4.814 UV 

44 363.618 361.597 362.825 4.786 4.664 4.95 UV 

45 362.723 359.013 361.29 4.745 4.609 4.8 UV 

46 360.702 357.452 359.448 4.759 4.609 4.841 UV 

47 360.957 357.631 359.499 4.745 4.623 4.841 UV 

48 367.61 364.616 365.486 4.105 4.064 4.186 UV 

49 364.207 361.239 362.109 4.132 4.091 4.2 UV 

50 373.342 370.834 372.088 4.05 3.995 4.145 UV 

51 338.953 398.391 291.668 0.232 6.805 6.886 SP 

52 351.106 411.287 309.22 0.014 6.436 6.491 SP 

53 292.358 399.44 202.42 0.041 14.918 15.068 SP 

54 292.64 340.82 400.387 6.995 0.095 6.859 SP 

55 311.498 352.897 413.488 6.655 0.095 6.505 SP 

56 341.102 364.105 421.829 5.318 0.068 5.182 SP 

57 391.534 277.518 332.684 8.264 8.073 0.927 SP 

58 414.127 313.11 353.639 6.668 6.477 0.014 SP 

59 421.497 341.179 363.798 5.345 5.195 0.014 SP 

60 347.371 407.654 341.639 2.1 6.818 5.605 VU B 

61 396.984 410.341 401.769 3.764 4.609 4.064 VU B 

62 395.73 410.264 400.976 3.736 4.664 4.064 VU B 

63 388.336 410.161 395.398 3.518 4.909 4.091 VU B 

64 393.632 410.366 399.287 3.668 4.718 4.077 VU B 

65 412.26 404.225 398.775 4.036 3.695 4.595 VU B 

66 412.746 406.375 401.974 4.036 3.764 4.486 VU B 

67 390.715 410.341 397.675 3.545 4.773 4.023 VU B 

68 410.034 355.405 353.256 5.127 2.155 6.382 VU B 

69 412.106 402.127 395.781 4.2 3.791 4.868 VU B 

70 406.784 400.592 396.191 4.173 3.927 4.623 VU B 

71 407.219 395.526 388.259 4.2 3.709 4.95 VU B 

72 376.975 405.018 384.651 3.45 5.25 4.255 VU B 
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APPENDIX E: Single Hidden Layer MLPNN Structure Used in Simulation 

 

FIGURE E.1 

 

Single Hidden Layer MLPNN Structure Used in Simulation 

APPENDIX E1: MLPNN Layer-1(Hidden Layer) Diagram 

 

FIGURE E.2 

 

MLPNN Layer-1 (Hidden Layer) Diagram. IW{1,1} inner Weights Subblock (weights 

between input and hidden layer), b{1}: bias of layer 1, P{1}: input to layer 1, a{1}: 

output of layer 1 

APPENDIX E2: MLPNN Layer-2 (Output Layer) Diagram 

 

FIGURE E.3 

 

 MLPNN Layer-2 (Output Layer) Diagram. LW: Layer Weights Subblock (Weights 

between hidden and output layer, b {2}: bias of layer 2.a{1}: input to layer 2 , a{2}: 

output of layer 2 
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APPENDIX F: ANFIS Architecture 
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FIGURE F 

ANFIS Architecture 
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APPENDIX G: Statistical Measurers Sample Calculations Based on SC_FIS Training  

      Data Sets Confusion Matrix (TABLE 7. 4) 

      

Total classification accuracy of SC_FIS (%) = total number of correct decisions / total 

number of decisions = 310 / 321 = 96.57% 

Sensitivity, specificity, precision and F-measure for VUB condition and Normal condition 

is given below. 

VUB Condition: 

True positive (TP) for this case, refers to the VUB instances which are correctly identified 

by the classifier as VUB condition.  

True negative (TN) for this case, refers to the other five conditions instances are correctly 

identified as that respective condition.  

False positives (FP) for this case, refers to the any other conditions instances that are 

incorrectly identified as VUB 

False negative (FN) for this case, refers to the VUB instances are misclassified as any other 

conditions. 

TP = 50, TN = 260, FP = 3, FN = 0 

Sensitivity (%) = TP/ (TP+FN) x 100 = (50 / (50 + 0)) x 100 = 100% 

Specificity (%) = TN / (TP + FP) = (260 / (260 + 3)) x 100 = 98.8% 

Precision (%) = TP / (TP +FP) = (50 / (50 + 3)) x 100 = 94.3% 

F- measure =   2 x precision x sensitivity / (precision + sensitivity)  

= (2 x 0.94 x 1) / (0.943 +1) = 0.97 

Similarly statistical measures calculated for normal condition are also calculated. 
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Normal condition (N): 

TP = 130, TN = 180, FP = 1, FN = 10. 

Sensitivity (%) = TP/ (TP+FN) x 100 = (130/ (130+ 10)) Х 100   92.9% 

Specificity (%) = TN / (TN + FP) = (180 / (180 + 1)) x 100 = 99.4% 

Precision (%) = TP / (TP +FP) = (130 / (130 + 1)) x 100 = 99.2% 

F- measure =   2 x precision x sensitivity / (precision + sensitivity )  

= (2 x 0.94 x 1) / (0.943 +1) = 0.97 
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