Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

~		BE - SEMESTER-IV(NEW) EXAMINATION - WINTER 2022			
•		Code:3140912 Date:14-12	2-2022		
Subject Name: Electromagnetic Fields					
Time:10:30 AM TO 01:00 PM Total Marks					
Instru					
	1.	Attempt all questions.			
	2.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.			
	4.	Simple and non-programmable scientific calculators are allowed.			
		r r r r r r r r r r r r r r r r r r r	MARKS		
Q.1	(a)	Explain how cross product of vectors can be obtained. Does cross	03		
۷.1	(4)	product obey the commutative law? Comment	00		
	(b)	<u>.</u>	04		
	` ′	vector in the direction of F			
	(c)	Discuss cylindrical and spherical co-ordinate system of vectors. Also	07		
		explain how a vector in Cartesian co-ordinate system can be converted			
		into cylindrical and spherical system.			
Q.2	(a)	State Coulomb's law and hence define electric field intensity	03		
Q.2	(a) (b)	4	03		
	(0)	$N(2,0,5)$ in vacuum, find the vector force on Q_2 by Q_1 using Coulomb's	04		
		law			
	(c)	Derive the equation for electric field intensity due to uniform sheet	07		
		charge located at $z = 0$ plane at any point on the positive z-axis. What			
		do you infer from the result obtained?			
		OR	. =		
	(c)		07		
		nC/m ² . (ii) within the sphere if $\rho_v = 10/r\sin\theta$ C/m ³			
Q.3	(a)	State and explain Gauss' law.	03		
Q.S		An infinite line charge on the z-axis passes through the centre of the	04		
	(~)	cylinder (having radius ρ) which is lying on the $z = 0$ plane. Using	-		
		Gauss' law, find the total charge enclosed			
	(c)	Discuss the application of Gauss' law to differential volume element and	07		
		hence explain divergence theorem			
0.1	()	OR	0.2		
Q.3	(a)		03		
	(b)	place to another in an electric field. Hence, define potential difference. In the region of free space that includes the volume, 2 <x,y,z<3 and="" d="</td"><td>04</td></x,y,z<3>	04		
	(0)	2	04		
		$\frac{2}{z^2}$ (yza _x + xza _y - 2xya _z) C/m ² , find the total charge enclosed using			
	(a)	divergence theorem. Define potential gradient. Prove that E = grad V	07		
	(c)	Define potential gradient. Prove that $E = -grad V$	07		
Q.4	(a)	State the point form of Ohm's law	03		
£	(b)	Derive the continuity equation $\nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t}$	04		
	(c)	State and explain uniqueness theorem	07		
	(0)	OR	07		

Q.4 (a) State and explain Biot Savart's law

03

	(b)	Starting from the point form of Gauss' law, derive Poisson's and	04
	(a)	Laplace's equations Given the vector magnetic potential $A = -\rho^2/4$ a_z Wb/m ² , calculate the	07
	(c)	total magnetic flux crossing the surface, $\Phi = \pi/2$, $1 < \rho < 2m$, $0 < z < 5m$.	U7
Q.5	(a)	State and explain Lorentz force equation	03
	(b)	Explain the term 'displacement current' in brief	04
	(c)	For uniform magnetic field intensity, prove that torque on a closed circuit is given by the cross product of magnetic dipole moment and flux density.	07
		OR	
Q.5	(a)	Explain Stoke's theorem in brief.	03
	(b)	Explain in brief, different types of magnetic materials	04
	(c)	Discuss Maxwell's equations in integral form and point form. Explain	07
	. ,	how they relate and electric and magnetic fields with each other. State applications of the same	
