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ABSTRACT

Networked control systems (NCSs) are traditional feedbackcontrol loops closed through

a real time communication network. That is, in networked control systems, communi-

cation networks are employed to exchange information (reference input, plant output,

control input, etc...) between control system components (sensors, controllers, actua-

tors, etc...). NCS has become popular in the field of control due to its distinct advantages

such as low cost, reduced weight, simple installation and maintenance, resource sharing

and high reliability. As a result, NCS have great potential in industrial applications such

as manufacturing plants, smart grid, haptic collaboration, vehicles, aircrafts, robotics,

spacecrafts and many others. NCS generally possess a dynamic nature which results in

various challenges for researchers in terms of random time delay, packet loss, multiple

packet loss, packet disordering, resource allocation and bandwidth sharing. It is well

known that the performance of NCS is significantly deteriorated due to these commu-

nication uncertainties. If these challenges are not handled properly, they may result in

degradation of the system’s performance. Among all these issues, time delay and packet

loss are considered to be crucial issues in NCS that degradesthe stability and control

performance of closed-loop control systems.

The delays may be constant, time-varying, and in most cases,random. The nature

of network delay mainly depends on the configuration of the communication medium.

If the communication medium is configured using lease line concept then the delays are

always deterministic in nature. And whenever the communication medium is shared by

large number of devices then the delays are random in nature.It is worth to mention

here that, the amount of time required for the data packets totravel from sensor to con-

troller and controller to actuator is defined as total network delay. The controller mainly

suffers from sensor-to-controller delay. When such delay is transformed into discrete-

time domain it mostly possesses non-integer type of values.Such network delays in

discrete-time domain are defined as fractional delays whichmay be either deterministic

i



or random in nature. So, it is important to compensate the effect of deterministic as well

random fractional delay in discrete-time domain at each sampling instant.

Further, as mentioned above there are also possibilities ofpacket loss during the

transmission of data packets from sensor to controller as well as controller to actua-

tor. The packet loss takes place due to heavy network load, network congestion and

node competition. In discrete-time domain, the network-induced delay greater than one

sampling time is also considered as packet loss. The nature of delay and packet loss is

mainly dependant on configuration of network medium.

In recent years, many algorithms have been studied for the stability analysis and

control design of NCS in discrete-time domain that includesstate feedback controller,

H∞, Model predictive controller and sliding mode controller etc... Among them Slid-

ing Mode Controller is one of the robust control algorithms because of its invariance

properties to parameter variation and uncertainties.

This thesis presents novel algorithms for designing Discrete-time Sliding Mode

Controller (DSMC) for NCS having both types of fractional delays i.e. determinis-

tic and random alongwith different packet loss conditions i.e. single packet loss and

multiple packet loss.

KEYWORDS: Networked control system, Discrete-time sliding mode control,

Fractional delay, Packet loss, Multi-rate output feedback.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

1.1.1 Overview of Network Control System

The advent of communication networks, introduced the concept of remotely control-

ling a system, which gave birth to Networked Control Systems(NCSs). The classical

definition of NCSs can be as follows: When a traditional feedback control system is

closed via a communication channel, which may be shared withother nodes outside

the control system, then the control system is called a Network Control System (NCS)

(Ling et al., 2007). An NCS can also be defined as a feedback control systemwherein

the control loops are closed through a real-time network (Gupta and Chow, 2010; Asif

and Webb, 2015). The defining feature of an NCS is that information (reference input,

plant output, control input, etc...) is exchanged using a network among control system

components (sensors, controllers, actuators, etc...). Figure (1.1) shows the conceptual

model of the NCS. The networked medium can be wired or wireless depending on the

type of the applications. In NCS, when any form of data that istransmitted through

wires then such medium is called as wired network while when any form of data that

is transmitted without use of electrical conductor then such medium is called as wire-

less network medium. The main advantage of using wired medium is data security,

while the main advantage of using the wireless network medium is to get rid of wires

when NCS architecture is complex. In NCS the wired communication is carried out

through CAN, Switched Ethernet, Ethernet, Profibus and Profinet networked medium

while wireless communication is done through Wirelss LAN, Wireless PAN, Wireless

MAN or Wireless WAN (Asif and Webb, 2015).



Figure 1.1: Conceptual model of NCS
(Gupta and Chow, 2010)

1.1.2 Structure of Network Control System

In general there are two major types of control systems that utilize communication net-

works: (1) shared-network control system and (2) remote control system. Figure (1.2)

shows the architecture of shared network control system. Itcan be noticed that using

shared-network control system the transfer of informationfrom sensors to controllers

and control signals from controllers to actuators can greatly reduce the complexity of

connections and provides more flexibility in installation,ease of maintenance and trou-

bleshooting. Moreover, it also provides the communicationamong control loops [Gupta

and Chow (2010), Zhanget al. (2013b), Zhaoet al. (2015)]. This feature is extremely

useful when a control loop exchanges information with othercontrol loops to perform

more sophisticated controls, such as fault accommodation and control. Similar struc-

tures for network-based control have been applied to automobiles and industrial plants.

The other control system that utilizes the network medium isremote control system. In

remote control system, the place where central controller is installed is called a local

site and the place where plant is installed is called a remotesite. The data transfer be-

tween local site and remote site is done through communication network. Sometimes

the remote control system is also defined as tele-operation control system. There are

two general approaches to design an NCS using remote controlsystem: (i) hierarchical

structure and (ii) direct structure. In hierarchical structure there are several subsystems

that are connected to central controller through communication network. Each subsys-
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Figure 1.2: Shared structure of NCS
(Gupta and Chow, 2010)

tem contains sensor, actuator, and controller by itself as depicted in Figure (1.3). In

this case, a subsystem controller receives a set point from the central controllerCM .

The subsystem then tries to satisfy this set point by itself.The sensor data or status

signal is transmitted back via network to the central controller. Figure (1.4) shows the

Figure 1.3: Hierarchical structure of NCS
(Gupta and Chow, 2010)

block diagram of direct structure. In this case, the sensor and actuator are attached to

a plant, while a controller is separated from the plant by a network connection. The

sensor transmits the signal to the controller through the network and controller sends

back the processed control signal to the plant via actuator through the network. This

type of configuration is used mainly in the process industries and haptic surgery. Many

complex network control system use the combination of both the structures defined as

hybrid structure.

3



Figure 1.4: Direct structure of NCS
(Gupta and Chow, 2010)

1.1.3 Concerns in Network Control System

The presence of communication medium in network control system leads to several

natural issues such as:

• Time delay: In network control system time delay is one of the cruicial issue.
The time required for the data to travel within the network isdefined as time
delay. The nature of time delay depends on the various factors such as network
configuration, distance of communication between plant andcontroller, baud rate,
network characteristics and network topology. The time delay can affect the per-
formance of the system in all the structure of NCSs (shared, hierarchical and
direct).

• Packet Loss: The next serious issue that affect the performance of NCS ispacket
loss. The packet loss is mainly caused due to congestion, network traffic and
jitter problems. Whenever the data transmitted from sensoror controller through
the network and fails to reach the destination then such condition is defined as
packet loss condition. In NCS there are two types of packet loss: (i) single packet
loss and (ii) multiplepacket loss. In some of the models of NCS the packet loss
situation are interlinked with time delay parameter. The packet loss situation
occurs in all the structure of NCSs (shared, hierarchical and direct).

• Packet disorder: The packet disorder isssue is generally caused in wirelessNCS
due to heavy traffic, congestion or jitter. In wireless NCS, the communications
takes place in the form of small packets. So, in order to have secure communi-
cation each packet is provided with a unique identification number in the header.
While transmission if any packet is loss and fails to reach atthe destination packet
disorder situation takes place. If these disorder is not corrected then it severely af-
fects the performance of the system. This situation takes place in all the structure
of NCSs connected wirelessly.

• Bandwidth Sharing: This issue mainly occurs in the shared structure or hier-
archical structure of NCSs. Both these structures providesthe flexiblity of con-
necting large number of devices (such as plant, controller,sensor and actuator)
through a common network medium. So, as the number of devicesincreases

4



the bandwidth sharing is also increased which in turn causeslesser transmission
speed, congestion problem, jittering problem or networkedtraffic problem. This
may cause further instability in the system.

• Security: The security issue is one of the major concern in NCS when thecom-
munication is done without wires. In wireless communictionthere are chances
of hacking due to which the false data is generated at the controller side and may
cause the instability in the system. This issue needs to be handled very appropri-
ately when the communication is done through shared structure or hierarchical
structure of NCS.

1.1.4 Advantages and Applications of NCS

For many years now, data networking technologies have been widely applied in in-

dustrial and military control applications. These applications include manufacturing

plants, automobiles, and aircraft. Connecting the controlsystem components in these

applications, such as sensors, controllers, and actuators, via a network can effectively

reduce the complexity of systems, with nominal economical investments. Furthermore,

network controllers allow data to be shared efficiently. It is easy to fuse the global infor-

mation to take intelligent decisions over a large physical space. They eliminate unnec-

essary wiring. It is easy to add more sensors, actuators and controllers with very little

cost and without heavy structural changes to the whole system. Most importantly, they

connect cyber space to physical space making task executionfrom a distance easily ac-

cessible. These systems are becoming more realizable todayand have a lot of potential

applications, including space explorations, terrestrialexploration, factory automation,

remote diagnostics and troubleshooting, hazardous environments, experimental facil-

ities, domestic robots, automobiles, aircraft, manufacturing plant monitoring, nursing

homes or hospitals, tele-robotics, smart grid etc....

1.2 Literature Survey

Due to its distinct advantages NCS has become popular in the field of control for indus-

trial applications. Also NCS has become an active research topic among international

researchers fraternity due to its wide applications. NCS generally possess a dynamic

nature which results in various challenges for researchersin terms of random time delay,

packet loss, multiple packet loss, packet disordering, resource allocation and bandwidth

5



sharing. If these challenges are not handled properly, theymay result in degradation of

the system’s performance. Among these challenges, time delay and packet loss are con-

sidered to be crucial issues in NCS that causes potential instability.

The next section represents the concise literature survey regarding the compensating the

effects of network delay and packet loss in continuous-timedomain and discrete-time

domain.

1.2.1 Continuous-time domain

Various researchers (Luck and Ray (1990a,b), Luck and Ray (1990c, 1994), Chan

(1995), Yuet al. (2000), Kimet al. (2002), Montestruque and Antsaklis (2003), Yue

et al. (2004), Yang (2006), Godoy and Porto (2010), Liet al. (2010), Vardhan and Ku-

mar (2011), Urbanet al. (2011)) have laid their sincere efforts for designing different

control algorithms that compensates the effect of network delay. In the early stages of

NCS, when modelling of random time delay was difficult to obtain, the most appropriate

approach was to treat the random time delay as constant whichare called as determin-

istic delays. Luck and Ray (1990a,b) introduced the concept of compensating the time

delay in continuous-time domain. They compensated the effect of time delay by in-

troducing the receiver buffer at the controller and actuator side. The size of the buffer

was equal to sensor to controller delay and controller to actuator delay. The proposed

methodology was tested under IEEE 802.4 network test bed considering the determin-

istic types of delays. Later on (Luck and Ray, 1990c, 1994) designed predictor-based

compensator in which observer was designed to estimate the plant states and predictor

was used to predict the control sequences based on the past input signals. The FIFO

buffer was set at the controller side and actuator side that stores the past output mea-

surements as well as control measurements. The size of the buffer was set according

to the upper bounds of sensor to controller delay and controller to actuator delay. They

also tested the efficacy of the proposed algorithm on IEEE 802.4 networked medium.

Chan (1995) designed conventional form of memory feedback controller based on de-

lay compensation method. Yuet al. (2000) designed multiple step delay compensator

for NCS in the presence of dynamic noise and measurement noises. Kimet al. (2002)

modelled an NCS as a switched system with constant input delays and derived the suffi-

cient conditions for the system stability using piecewise continuous Lyapunov methods.
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Montestruque and Antsaklis (2003) designed state feedbackcontroller that compensates

the effect of deterministic network delays in continuous-time domain. Yang (2006) pro-

posed the state feedback controller in the presence of network delays in continuous-time

domain. They proposed ZOH model at controller and actuator side to compensate the

effect of network delay. They also assumed that the sensor istime driven device while

actuator is event driven device. Godoy and Porto (2010) designed PID controller to

compensate the network delay and validate the feasibility of controller through DC mo-

tor as plant and CAN (Control Area Network) bus as networked medium. Li et al.

(2010) designed a method for internet-based network control system in a dual rate con-

figuration to achieve load minimization and dynamic performance specifications. The

remote PID controller was design which regulates the outputaccording to desirable

reference and adopts the lower sampling rate to reduce the load on the network. The

performance of the system was validated for fixed network delays.

In view of this, an increasing number of researchers began toinvestigate different con-

trol methodologies for NCSs with random or time varying delays. Zhanget al. (2001)

proposed the stability criteria for NCS having network delays shorter as well as longer

than sampling interval. They also proposed state feedback controller using conventional

estimator technique that compensates the effect of networkdelays having time varying

nature. Similarly, Walshet al. (2002) proposed the mathematical model of NCS con-

sidering time varying network induced delay. They derived the stability criteria for

general NCS in continuous-time domain based on TOD (try-once-discard) algorithm.

Yueet al. (2004) designed state feedback controller in the presence of time varying net-

work delays. They assumed that the network delays are lesserthan sampling interval.

Tipsuwan and Chow (2004) proposed the concept of external gain scheduling via GSM.

The GSM was used to adjust the controller gains externally atthe controller output with

respect to the current network traffic conditions without interrupting the internal design

of controller. The network delays in the forward channel andfeedback channel were

modelled using RTT approach. Ji and Kim (2005) proposed state feedback control with

estimator to compensates the effect of time varying networkdelay in the presence of

matched uncertainty. They tested the efficacy of the proposed controller using Ether-

net as a network medium. Ma and Zhao (2006) derived the stability criteria for closed

loop NCS using the average dwell time approach and piecewiseLyapunov function

method. They designed state feedback controller with estimator that takes care of sen-
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sor to controller delay. Peng and Yue (2006) designed the state feedback controller

for NCS considering time varying network delay in the statesand matched uncertainty.

Gaoet al. (2007) proposed a new time delay system approach which contains multi-

ple successive delay components in the plant states and based on that they designed

theH∞ controller to overcome the effect of these state delays. Liuet al. (2007) de-

signed network predictive controller to overcome the effects of random network delay

in continuous-time domain. The effects of random delays were compensated through

network delay compensator placed on the actuator side. The network delay chooses the

control input values from the control latest prediction sequence. Cuellaret al. (2007)

proposed an observer based predictor using the Pade approximation technique for time

lag processes. Sun and Xu (2009) modelled the random time delays using stochastic

approach in continuous-time domain. They used Markov jump linear systems approach

to model sensor to controller random delay while controllerto actuator delay was as-

sumed to be constant. Yuhong and Yeguo (2010) designed statefeedback controller

considering time varying network delay in the states and proved the closed loop NCS

stability using LMI approach. Onoet al. (2010) designed a state feedback controller

based on a modified Smith predictor which stabilized the plant in the presence of dead

time. Vardhan and Kumar (2011) used smith predictor algorithm to compensate the

effects of time varying network delays in continuous-time domain. Urbanet al. (2011)

studied the effect of network delays in wired and wireless networked medium using

PID controller. They used CAN protocol for the wired communication and Zigbee

protocol for wireless networked medium. Similarly, Ridwanand Trilaksono (2011) de-

signed theH∞ state feedback controller assuming all states variable aremeasurable in

the presence of time-varying network delays. Vallabhanet al. (2012) have used the an-

alytical framework approach for compensation of random time delay and packet loss.

Hikichi et al. (2013) worked on continuous-time delay compensation usingpredictors

and disturbance observer for designing a PID controller. Huet al. (2013) designed a

sliding mode intermittent controller for bidirectional associative memory (BAM) using

neural networks with delays. Cacet al. (2014) used a pole placement method for com-

pensating the time delay in the continuous-time domain. Thealgorithm was designed

for the CAN type deterministic networked medium. Recently,Yi et al. (2014) solved

the time delay problem by using the Smith predictor algorithm. The method was veri-

fied over wireless sensor networks (WSN) connected between the controller output and
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plant input. Recently, Khanesaret al. (2015) modelled the random time delays using

a uniform probability distribution function in continuous-time domain. Saravanakumar

et al. (2016) proved the stability using a Markovian Jump approachfor neural networks

having varying time interval delays.

1.2.2 Discrete-time domain

Like continuous-time domain, many researchers (Jacovittiand Scarano (1993), Nilsson

et al. (1998), Shousong and Qixin (2003), Zhivoglyadov and Middleton (2003), Yue

et al. (2005), Zhaoet al. (2008), Gou (2009), Xiong and Lam (2009), Liet al. (2014),

Guoet al. (2014), Yaoet al. (2014), Arghaet al. (2015)) have also tried to focus their

work in discrete-time domain. Jacovitti and Scarano (1993)proposed various time delay

estimation techniques for discrete-time systems. Nilssonet al. (1998) used stochastic

approach to design state feedback controller for time varying network delays in discrete-

time domain. Similarly, Shousong and Qixin (2003) also usedstochastic approach for

designing optimal controllers for NCS. They assumed that the random network delays

are greater than sampling interval. Zhivoglyadov and Middleton (2003) proposed state

feedback observer technique for linear network control system to compensate the effect

of random delays. Yueet al. (2005) provided the model of NCSs with random network

induced delay in discrete-time domain. They designedH∞ controller to compensate

the effect of random delays in the presence of matched uncertainty. Zhaoet al. (2008)

designed integrated predictive controller for networked control system. The predictive

controller is applied to generate the control predictions for each delayed sensing data

and previous control information. They also designed the time delay compensator at ac-

tuator side that actively compensates the forward channel delay when control action is

taken. Gou (2009) designed the state feedback controller indiscrete-time domain based

on variable-period sampling approach for random network delays in NCS. Xiong and

Lam (2009) introduced the concept of ZOH model at controllerand actuator side that

compensates the effect random network delays in discrete-time domain. The proposed

ZOH model has an capability of choosing the newest control input. Yanget al. (2010)

proposed discrete-time sliding mode observer that estimates the random delay and com-

pensates its effect in the presence of matched uncertainty.Li et al. (2014) designed a

sliding mode predictive control for compensation of delay in a networked control sys-
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tem using a Kalman Predictor. They considered networked delays are random in nature

with an integral multiple of sampling interval. Guoet al. (2014) considered the state

estimation problem for wireless NCS. The sliding mode observer was designed to solve

the state estimation problem considering stochastic uncertainty and time delay. Yao

et al. (2014) designed a robust model predictive control (RMPC) and state observer for

a class of time varying systems under input constraints suchas matched uncertainty.

Arghaet al. (2015) designed stochastic type sliding mode controller that compensates

the effect of random networked delay with values lesser thansampling interval.

Various researchers (Nilssonet al. (1998), Zhivoglyadov and Middleton (2003), Zhang

et al. (2005), Yanget al. (2006), Gou (2009), Shi and Yu (2009), Dong and Kim (2012),

Geet al. (2013), Arghaet al. (2015)) have also laid their sincere efforts to model ran-

dom time delays in last decade. Among them Nilssonet al. (1998) introduced the time

stamp technique to model the random time varying networked delay. Shousong and

Qixin (2003) used stochastic approach to model the random network delays. Zhang

et al. (2005), Gou (2009) as well as Dong and Kim (2012) modelled random time de-

lay using the concept of Markov Chain process in discrete-time domain. They have

used two state Markov chain model to describe sensor to controller delay and controller

to actuator delay. While, Yanget al. (2006) modelled random networked delay using

Bernoulli’s distributed white sequence approach. Shi and Yu (2009) modelled random

delays using Markov chain process and designed output feedback controller to han-

dle the effects of random delay. Geet al. (2013) used an independent and identically

distributed approach to model the time varying networked delay and proposed state

feedback controller. Recently, Arghaet al. (2015) proposed Bernoulli’s white sequence

approach for modelling the random time delay and proposed sliding mode controller in

the presence of random time delay and matched uncertainty.

1.2.3 Packet losses

As mentioned above, there are also possibilities of packet loss during the transmission

of data packets from sensor to controller as well as controller to actuator. The packet

loss takes place due to heavy network load, network congestion and node competition.

In NCS there are two types of packet losses (i) single packet loss and (ii) multiple

packet loss. The single packet loss situation generally occurs when the communication
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of data transfer is done over a shorter distance and multiplepacket loss situations gen-

erally occurs when communication of data transfer is done over a longer distance. In

the research works (Zhanget al. (2001), Yueet al. (2005), Zhanget al. (2005), Yang

et al. (2006), Hespanhaet al. (2007), Guptaet al. (2007), Wu and Chen (2007), Shi

and Yu (2009), Zhu and Yang (2009), Niu and Ho (2010), Dong andKim (2012), Ge

et al. (2013), Wen and Gao (2013), Liet al. (2014), Khanesaret al. (2015), Argha

et al. (2015), Songet al. (2016)), mathematical model is proposed assuming that the

packet loss within the communication medium occurs when network delay is greater

than sampling interval. Zhanget al. (2001) consider the deterministic single packet loss

model with packet dropouts occurring at an asymptotic rate.Yueet al. (2005) designed

single and multiple packet loss model in context with randomnetwork delays. They

assumed that whenever the controller and actuator are not updated the data packet loss

takes place for that sampling interval. Zhanget al. (2005) considered the packet loss in

correspondence with random time delay model. They also madea generalized assump-

tion that when the delays are greater than sampling intervalthe data packets will be lost

at the controller side. Similarly, Yanget al. (2006) also considered the same packet

loss approach while modelling the random time delays. Hespanhaet al. (2007) used

Bernoulli’s probability distribution function to derive the mathematical model of single

packet loss as well as multiple packet loss. In both the casesthe situation of packet

loss was considered when the network delay is greater than sampling interval. Gupta

et al. (2007) designed optimal LQG controller that compensates the effect of packet

loss occurring within the network. Similarly, Wu and Chen (2007) used the concept of

the state estimation to compensate the effect of packet lossin discrete-time domain in

NCS. Shi and Yu (2009) assumed the packet loss situation while modelling the random

time delays using Markov’s chain process. Zhu and Yang (2009) designed state feed-

back controller with multiple-packet transmission. They proposed the model of NCS

with multiple packet transmission and given mathematical model of packet dropout in

sensor to controller channel and controller to actuator channel. Niu and Ho (2010) de-

signed the compensator using probability function that compensates the effect of packet

loss within the network. Dong and Kim (2012) used Dirac deltaprobability function

to derive the mathematical model of packet loss assuming thesingle packet loss sit-

uation. Wanget al. (2013) used the concept of polytopic-uncertainty-based data drift

to model the packet loss occurring in sensor to controller and controller to actuator.
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They designed theH∞ controller to compensate the effect of random time delay and

packet loss. Wen and Gao (2013) proposedH∞ controller for NCS in multiple packet

transmission with random delays. They modelled multiple packet using markov’s chain

process. Liet al. (2014) designed sliding mode predictive controller under multiple

packet transmission policy. Khanesaret al. (2015) derived the packet loss model using

the concept of uniform distributed probability function with single packet loss assump-

tion. Arghaet al. (2015) included the random packet loss situation while modelling the

random time delays using Bernoulli’s distribution. Recently, Songet al. (2016) have

proposed the packet loss model using Markov chain process. The model was validated

for a single packet drop as well as successive packet drops. They proposed discrete-time

integral sliding mode controller using the proposed model to compensate the effects of

packet loss.

1.2.4 Output feedback

The above all literatures, discusses about design of controllers based on the state in-

formation method. The major disadvantage of these controllers is that, its performance

depends upon the availability of state information. In various applications of NCS such

as missile guidance control, aircraft control, chemical industries and automobile sec-

tors it is not mandatory that all the states information is available. In such cases, it is

better to design the controller based on output feedback method. The main advantage

of this method is that, the performance of controller depends on the availability of out-

put information which is always available. Recently, many researchers have paid much

attention on designing the controllers based on output feedback approach in NCS. Mu

et al. (2004) proposed Luenberger output feedback based controller for discrete-time

networked systems. The controller consists of two parts: a state observer that estimates

plant states from the output when it is available via network, and a model of the plant

that is used to generate the control signal when plant outputis not available. Similarly,

Hespanha and Naghshtabrizi (2005) designed observer basedLuenberger output feed-

back to deal with these problems for anticipative and non anticipative control unit in

continuous-time domain. Shi and Yu (2009) proved the stability of NCS with random

time delays using output feedback method. Zhang and Xia (2011) also designed pre-

dictive controller that compensates the effect random delays in the presence of matched
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uncertainty using output feedback approach. Yu and Antsaklis (2011) introduced the

concept of event triggered for designing output feedback controller in NCS in the pres-

ence of time varying network delays. Zhanget al. (2013a) designed output feedback

sliding mode controller to study the effect of variable timedelay in the presence of

matched uncertainty. Jungerset al. (2013) proved stability of NCSs including global

time varying networked delay. They designed controller based on dynamic output feed-

back approach dependent on estimation of time varying delay. Similarly, Wanget al.

(2013) designed output feedbackH∞ controller for NCSs with packet dropouts, net-

work induced delays and data drift. They introduced polytopic uncertainty based data

drift to model closed loop NCSs which include random time delay and packet loss.

Qiu et al. (2013) designed robust output feedback controller for T-S fuzzy based affine

systems with unreilable communication links with multiplepackets-dropout. Later,

Honget al. (2014) designed conventional observer using output feedback approach for

wireless NCSs with time varying network delays and packet dropouts. They modelled

wireless NCS using asynchronous dynamic system with assumption that time varying

network delays can be more or less than sampling interval. Yuet al. (2014) designed

multiple dynamic output feedback controllers for networked control systems in the pres-

ence of random time delays and packet loss.

It is worth to mention here that, the time required for the data packets to travel from

sensor to controller and controller to actuator is defined astotal network delay. When

such delay is transformed into discrete-time domain it mostly possesses non-integer

type of values. Such network delays in discrete-time domainare defined as fractional

delays. The networked control system has sensor to controller fractional delay present

in the feedback channel and controller to actuator fractional delay present in the for-

ward channel. The nature of both these fractional delays depends on the type of the

communication medium. In NCS, when the data packets are exchanged through real

time communication medium the network delay always have thefractional delay. So,

it is important to compensate the effect of deterministic and random type of fractional

delay in discrete-time domain at each sampling instant in the presence of packet loss

and matched uncertainty.
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1.3 Thesis contribution

This thesis contributes mainly following:

• Firstly, a novel discrete-time sliding surface is proposedusing the compensated
state information and proposed a design of discrete-time sliding mode controller
that encompasses deterministic type fractional delay and single packet loss. The
Thiran’s approximation technique is used for compensatingthe deterministic type
of fractional delays. Two types of Discrete-time Sliding Mode Controllers are
proposed that is Switching type and Non-switching type DSMC. The conditions
for stability of the closed loop system using proposed controller are derived using
the Lyapunov approach. The algorithms are checked with simulation also vali-
dated by the experimental results on servo system for various performance param-
eters. The proposed algorithms are also compared with conventional sliding mode
controller using CAN and Switched Ethernet as network medium. The robustness
properties of the algorithm are also checked with slowly varying matched uncer-
tainties.

• The above algorithms are using the state information for thecontroller design but
in most of the control scenario only the output information is available. The the-
sis incorporates the multi-rate output feedback approach for the state estimation
in the closed loop. The main advantage of using multi-rate output feedback is
that the error between estimated state variables and actualstate variables goes to
zero once the output sample is available. The proposed multi-rate output feed-
back discrete-time sliding mode controller also performs well in the networked
environment.

• Next, the thesis proposes the discrete-time sliding surface design for the random
fractional delay and single packet loss that occur within the sampling period. The
random delay is compensated using Thiran’s approximation technique in the pres-
ence of packet loss situation. The random fractional delay is modelled by Pois-
son’s distribution function and Packet loss are modelled byBernoulli’s function.
The closed loop stability is proved using the Lyapunov function. The efficacy of
proposed novel non-switching type of DSMC is endowed by simulation results
and also experimentally validated by servo system.

• Further, the proposed algorithms extended for the random fractional delay with
multiple packet loss situation. The simulation as well experimental results with
various fractional delay situation and matched uncertainties show the efficacy of
the proposed algorithms.

1.4 Thesis structure

The thesis is structured as follows:

• Chapter−1 briefs about introduction and literature survey for NCS. The chap-
ter discusses a brief introduction of NCS with conceptual model and different
stuctures of NCS. Various issues related to NCS are also discussed.
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• Chapter−2 discusses the Preliminaries of Networked Control System and Slid-
ing Mode Control. In this chapter a basic block diagram of NCSwith different
types of time delays that affect the performance of the system are discussed. The
origin of sliding mode controller in continuous-time domain and discrete-time
domain are also briefly discussed. Lastly, various challenges of NCS with SMC
are also highlighted.

• The main contribution of thesis design of discrete-time sliding mode control for
deterministic type fractional delay is mentioned inChapter−3. In this chapter,
the compensation of determinitic fractional delay is studied through Thiran’s Ap-
proximation in the sliding surface. The discrete-time sliding mode control law is
derived using proposed sliding surface with switching typereaching law. Further,
the stability of the closed loop NCS is proved through Lyapunov approach. The
efficacy of the proposed algorithm is tested under simulation enviornment and
experimental enviornment.

• Chapter − 4 briefs about the designing of non-switching type discrete-time
sliding mode controller in the presencce of deterministic fractional delay and
matched uncertainty. In this chapter, the design of controllaw is based on sliding
surface derived using Thiran Approximation. Further, the stability of the closed
loop NCS is proved through Lyapunov approach that ensures the finite time con-
vergence of system states within the specified band. The efficacy of the proposed
algorithm is tested under simulation enviornment, experimental enviornment and
real-time networks.

• Chapter − 5 describes the design of discrete-time sliding mode controlusing
multirate output feedback approach with fractional delay compensation. In this
chapter, the control signal is computed based on the output measurements avail-
able at the controller side and the fractional delay is compensated using Thiran
approximation. The stability of the closed loop NCS with derived control law is
proved using Lyapunov approach. The simulation results arecarried out in the
presence of network delay and matched uncertainty in order to prove the effec-
tiveness of proposed algorithm.

• Chapter− 6 describes the design discrete-time sliding mode controller for ran-
dom communication delay and packet loss. In this chapter, the compensation
of random fractional delay is studied using Thiran’s Approximation with packet
loss condition. The mathematical models of random fractional delay and single
packet loss are derived using stochastic approach. The derived discrete-time slid-
ing mode control law is verified through simulation and implementation results
in the presence of random fractional delay, packet loss and matched uncertainty.

• Chapter − 7 discusses the mathematical model of multiple packet loss and de-
sign of discrete-time sliding mode control for multiple packet transmission. In
this chapter, the discrete-time sliding mode control law isdesigned in the pres-
ence of multiple packets transmission. The multiple packetloss is modelled using
probability function. The efficiency of the proposed algorithm is verified through
simulaton and experimental results.

• The concluding remarks along with future scope and challenges are mentioned in
Chapter − 8. In this chapter, final comments and future scope of discrete-time
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SMC algorithms are discussed. Lastly, various challenges are also listed that are
still remain unsloved in network control system domain.
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CHAPTER 2

PRELIMINARIES OF NETWORK CONTROL

SYSTEM AND SLIDING MODE CONTROL

2.1 Introduction

In this chapter, we introduce the concept of Networked Control System (NCS), the ir-

regularities such as time delay and packet loss that occurs in the NCS. We also discussed

the various control methods available for NCS. This chapteralso presents the concept

of sliding mode control alongwith literature survey on SMC for NCS.

2.2 Networked Control System (NCS)

NCS is mainly classified in three structures: (i) shared network structure, (ii) hierarchi-

cal network structure and (iii) direct network structure. Figure (2.1) shows the block

diagram of typical network control system with direct network structure. In this struc-

ture, the sensor, plant and actuator are connected to controller through communication

network. The communication network in NCS transfers the data in the form of packets.

The thick lines indicates the continuous-time data signal while the dotted lines indicates

discrete-time data signals. As shown in Figure (2.1) the data signal transmitted from

sensor to controller through the network is called as feedback channel while the control

signal transmitted from controller to actuator through thesame network is called as for-

ward channel. In NCS most of the applications are based on time-sensitive parameter.

So, in such cases, if the network delay increases beyond its tolerance limit the plant or

the device can either be damaged or gives inferior performance.

2.2.1 Delays and Packet Loss in NCS

In NCS there are four types of time delay (i) sensor to controller delay, (ii) controller to

actuator delay, (iii) computational delay and (iv) processing delay. The sensor to con-



Figure 2.1: Block Diagram of Network Control System

troller delay is present in the forward channel and controller to actuator delay present in

the feedback channel. The time required for the data to travel from sensor to controller

is called a sensor to controller network delay. And similarly the time required for con-

trol signal to travel from controller to actuator is called acontroller to actuator delay.

The combination of both these delays are defined as network delays. The computational

delay and processing delay are caused due to the presence of sensor, controller and ac-

tuator. So they are also defined as the system delays.

The combination of system delays and network delays is defined as total delay and

mathematically it is represented as:

τt = τ + τp, (2.1)

where,τ is the total network delay andτp is the system delays.

The mathematical representation of total network delay andsystem delay is given as:

τ = τsc + τca, (2.2)

τp = τsp + τcp + τap, (2.3)

where,τsc is sensor to controller delay,τca is controller to actuator delay,τap is actuator

processing delay,τcp is controller computational delay andτsp is sensor processing de-

lay.
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In NCS it is always assumed that the effect of system delays (τp) are negligible com-

pared to network delays (τ ). So, Eqn. (2.1) can be written as,

τt = τ. (2.4)

Thus, from above Eqn. (2.4), it can be noticed that when real time networks are not

considered in NCS the total network delays are always equal to total delay. These

network delays can either be deterministic or random in nature.

The nature of the network delays (τ ) depends upon the configuration of networks while

the system delays (τp) are always deterministic in nature. When the communication

takes place using the concept of lease line then network delays (τ ) are deterministic in

nature. And when the communication medium is shared by largenumber of devices

then network delays (τ ) are random in nature.

A natural assumption on network delays(τ) can be made as,

τ ≺ h, (2.5)

Or

τl ≤ τ ≤ τu. (2.6)

where,h is sampling interval,τl is lower bound of delay andτu is upper bound of delay.

Observing condition (2.5) and (2.6), it can be concluded that the network delay should

always be bounded. During transmission if the packet gets delayed or fails to arrive

at the destination within the specified condition (2.5) and (2.6), then such packets are

considered as lost packets within the network.

In NCS, the packet loss occurs either in the forward channel or feedback channel. The

packet loss are broadly classify in two different categories based on the distance of

communication: (i) If the distance of commmunication is shorter, the data transfer in

NCS takes place in the form of frames. Such frame when lost during transmission,

is treated as single packet loss. (ii) If the distance of communication is longer, the

same frame is breakdown in the form of small packets. Such packets when lost during

transmission are defined as multiple packet loss.
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2.2.2 Sliding Mode Control with NCS

Many researchers have proposed different controller design methodologies in discrete-

time as well continuous-time domain for NCSs such as Gain Scheduler Middleware

[Tipsuwan and Chow (2004)],H∞ [Yue et al. (2005)], State Feedback [[Peng and Yue

(2006)] [Gaoet al. (2007)], Sliding Mode Controller (SMC) [Mehta and Bandyopad-

hyay (2009)], Adaptive Controller [Vallabhanet al. (2012)], Smith Predictive [Hikichi

et al. (2013)], Back-stepping Controller [Yiet al. (2014)], fuzzy-based sliding mode

control [Khanesaret al. (2015)] etc... Among all these controllers SMC has been an

active research area in the field of NCS because it has abilityto reject the disturbances

which makes it more robust.

In past few decades many researchers have tried to implementthe SMC algorithm in

various ways to compensate the effects of network delay and packet loss in NCSs. Wang

et al. (2011) proposed variable structure control algorithm for time delay system. They

proposed the controller based on the concept of smith predictor. Gao (2013) designed

integral type of sliding mode control in continuous-time domain in the presence of vari-

able time delay and matched uncertainty. They proposed sliding mode compensator in

reaching law that compensates the effect of variable network delay. Goyalet al. (2015)

designed fuzzy-based sliding mode control in continuous-time domain. They consid-

ered the state-based delay rather than control input delay.Recently, Khanesaret al.

(2015) proposed indirect fuzzy based sliding mode control in continuous-time domain

for NCS. The effect of random time delay was compensated using Pade approximation

and packet loss was compensated using probability distribution function.

With the rapid development in digital controllers, variousresearchers have contributed

their work in discrete-time domain. The main advantage of designing the controllers in

discrete-time domain is that the effects of control signal can be observed very clearly at

each sampling instant. Moreover, in case of NCS since the communication is carried out

in digital signal form so it better to design SMC in discrete-time rather than continuous-

time domain. Xiaojuan and Jinglin (2010) designed fuzzy based sliding mode control

for NCS and studied the effect of time delay using Ethernet asa network medium in

discrete-time domain. Niu and Ho (2010) designed sliding mode control that compen-

sates the effect of single packet loss using probability distribution function. Yinet al.

(2011) designed adaptive based sliding mode control in the presence of variable time
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delay and uncertainties. They considered sensor to controller delay and transformed the

control signal into non-delayed form using fuzzy fusion system in discrete-time domain.

Zhanget al. (2013a) designed output feedback based sliding mode controller tostudy

the effect of variable time delay in the presence of matched uncertainty. Liet al. (2014)

designed sliding mode controller using Kalman predictor inthe presence of multiple

packet transmission. The Kalman predictor was used to estimate the integer type of

network delays. Goyalet al. (2015) proposed robust sliding mode control for nonlinear

discrete-time delayed system based on neural network. Theyassumed network delay as

deterministic in nature. Arghaet al. (2015) proposed discrete-time sliding mode con-

trol that compensates the effect of random time delay and packet loss using Bernoulli’s

distribution. They considered integer type of network delay in discrete-time domain.

Recently, Songet al. (2016) designed integral sliding mode controller that compensates

the effect of single as well as multiple packet loss using markov’s chain process.

2.3 Brief Review of Sliding Mode Control (SMC) Tech-

nique

2.3.1 Origin of SMC

The concept of Variable Structure Control (VSC) was introduced by Emelyanov group

in late 1950’s (Emelyanov and Korovin, 1981). The main idea of VSC was to switch

between the various control structures according to the evaluation of the system states.

The concept of VSC can be understand through the following example.

Consider two constituent systems given as:

ẍ = −a1x, (2.7)

ẍ = −a2x, (2.8)

where,0 ≺ a2 ≺ a1. The phase potraits of the systems are shown in Figure (2.2) and

(2.3) repectively. It can be observed that both the systems are oscillartory in nature

and are unstable. But, when both structures are switched at appropriate time, then,
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combined system is asymptotically stable. The combined response of both the system

is shown in Figure (2.4). Thus it can be noticed, that the property not present in any of

the system is obtained by VSC.

Figure 2.2: State Trajectories of system in Mode-I

Figure 2.3: State Trajectories of system in Mode-II

Figure 2.4: Combined system response

While carrying out research on VSC some of the researchers [Utkin (1993), Ed-

wards and Spurgeon (1996), Drakunovet al. (1990), Furuta (1990)] made an unusual

observation that switching between two or more unstable control structures may re-

sult in stable control system. They introduced the notions of variable structure control,
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variable structure system and a new control idea called sliding mode control came into

existence. The sliding mode control, or SMC, is a nonlinear control method that alters

the dynamics of a nonlinear system by application of a discontinuous control signal

that forces the system to "slide" along a cross-section of the system’s normal behaviour.

Hence, sliding mode control is a variable structure controlmethod. The multiple con-

trol structures are designed so that trajectories always move towards an adjacent region

with a different control structure, and so the ultimate trajectory will not exist entirely

within one control structure. Instead, it will slide along the boundaries of the control

structures. The motion of the system as it slides along theseboundaries is called a slid-

ing mode and the geometrical locus consisting of the boundaries is called the sliding

surface. The conventional example of sliding mode is secondorder relay system which

is given by,

ẍ+ a2ẋ+ a1x = u, (2.9)

u = −Mssign(s), (2.10)

s = cx+ ẋ, (2.11)

where,a1, a2, Ms, c are contants. From Eqn. (2.10) it can be noticed that the control

input in the second order system might take only two valuesMs and−Ms and causes

discontinuities on the straight lines = 0 in the state plane(x, ẋ). Figure (2.5) shows

the response of the sliding mode for the specified example with a1 = a2 = 0. From the

result it can be observed that in the neighbourhood segmentmn on the switching line

s = 0, the trajectories of the system (2.9) runs in the opposite directions which leads

to the appearance in sliding mode along this line [Sabanovicet al. (2004)]. Thus the

Eqn. (2.11) can be interpreted as sliding mode equation. Further, it can be noticed that

the order of sliding mode equation is less than the original system (2.9). Thus it can

be said that the sliding mode does not depend on plant dynamics but it is determined

by parameterc only. It is worth to point out that for desired performance ofthe closed

loop system not only the sliding mode controllers have to be properly designed but the

switching rule should also be chosen properly. Based on the appropriate selection of

switching rule and designed controller the system states will drive onto the predefined

sliding surface in finite time. This ensures stability of sliding motion on the surface and

desired dynamic characteristics of the systems are achieved.
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Figure 2.5: Sliding mode for relay system

Due to its lower sensitivity towards plant parameters variations and external dis-

turbances it eliminates the necessity of exact modelling. It allows the decoupling of

overall system motion into partial components of lower dimensions. This reduces the

complexity of feedback design. In sliding mode control the control actions are func-

tion of discontinuous state which can be easily implementedusing conventional power

converters. Due to such properties SMC has been proved applicable to a wide range

of applications such as robotics, electrical drives, electrical generators, motion control,

process control and networked control system.

2.3.2 Continuous-time Sliding Mode Control

In sliding mode control the control law consists of two important phases: (i) reaching

phase (ii) sliding mode phase. When the system state is driven from any initial state to

reach the switching manifold in finite time then such phase iscalled reaching phase and

when the system is induced into the sliding motion on the switching manifolds, then

such phase is defined as sliding mode phase. Figure (2.6) shows the phases of sliding

mode control withs as continuous-time sliding function given by:

s = {x ∈ X|s(x, t) = 0}. (2.12)

In order to induce the sliding mode following properties should exist: (i) the system
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Figure 2.6: Phases of Sliding Mode Control

stability should be restricted to the sliding surface and (ii) the sliding mode should start

within a finite time. The sufficient condition for the slidingmotion to slide on the given

surface is given by:

sṡ ≺ 0, (2.13)

where,s is the sliding surface anḋs is rate of change of distance from the sliding

surface. The condition specified in Eqn. (2.13) is called a reachability condition. The

reachability condition is not sufficient for the sliding mode. The main drawback of

condition mentioned in (2.13) is that,s(t) takes infinite time to reach on the sliding

surface. Thus, to over come this drawback another conditionis defined as:

sṡ ≺ −η|s|, η ≻ 0. (2.14)

This condition is known as ’η-reachability’ condition that ensures the finite time con-

vergence tos = 0.

As discussed earlier, the designing of the sliding mode controller includes reaching law

design, sliding surface design and control law design. Let us consider the continuous-

time system given by:

ẋ(t) = Ax(t) +Bu(t), (2.15)

y(t) = Cx(t). (2.16)
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The dynamics of the sliding function can be expressed in the form of constant-rate

reaching law as:

ṡ = −kssgn(s), ks ≻ 0. (2.17)

Let, the sliding surface be given by:

s(t) = Csx(t), (2.18)

where,Cs is the sliding gain that can be computed using pole-placement method based

on the proper slection of poles or LQR method based on the proper slection ofQ andR

matrices.

Thus, the control law for the system (2.15, 2.16) is derived by using the conditioṅs = 0

as:

u(t) = −(CsB)−1[ACsx(t) + kssgn(s)]. (2.19)

The reaching laws proposed in the literatures [Fallahaet al. (2011), Mehta and Bandy-

opadhyay (2015)] are,

• Constant-proportional rate

ṡ = −qs− kssgn(s), q ≻ 0 (2.20)

• Power-rate reaching law

ṡ = −ks|s|
ιsgn(s), 0 ≺ ι ≺ 1 (2.21)

• Exponential reaching law

ṡ = −
ks
N(s)

sgn(s), (2.22)

where,N(s) = δ0 + (1− δ0)e
−ι|s|p0 , δ0 is strictly positive offset less than 1,p0 is a

strictly positive integer.

The main limitation of continuous-time SMC is that once the closed loop system

states reach on the sliding surface, a discontinuous control term switches with high fre-

quency which results in chattering phenomenon. The chattering is caused due to various

reasons such as switching time delay, controller computation delay, dynamics of plant

elements such as actuator and sensor etc... In practical applications this phenomenon is

not desirable as it affects the performance of plant. While in electrical and mechanical
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applications it causes high heat losses and generates wear and tear of the moving parts

of machines. In discrete-time sliding mode control generally low switching frequencies

are required because of limited sampling frequency due to which it becomes more use-

ful for practical implementation. Moreover, in discrete-time SMC the computation of

control signal is done at each sampling interval and remainsconstant for that period.

So due to this the system state trajectory is unable to move along the sliding surface

but follows the zigzag motion about the sliding surface defined as quasi-sliding mode

motion.

2.3.3 Discrete-time Sliding Mode Control

The concept of discrete-time sliding mode control is first introduced by Milosavljevic

(1985). In his work he proved that the sliding motion in discrete-time is more accu-

rate than continuous-time sliding mode control. Later on, Sarpturket al. (1987), Utkin

(1993), Bartoliniet al. (1995), Gaoet al. (1995), Bartoszewicz (1996, 1998), Suet al.

(2000) and many others extended their work in discrete-timesliding mode control.

The designed procedure of DSMC includes: (i) design of sliding surface, (ii) reaching

law and (iii) control law that steers the system states to slide along predefined sliding

surface over a finite interval of time. In discrete-time SMC Gao’s introduced the con-

cept of switching function in the reaching law that causes the system states to move

towards the vicinity of the origin but cannot get arbitrarily closed to the origin. While

Bartolini and Bartoszewicz designed the reaching law without considering the switch-

ing function. They considered that discrete-time control is naturally discontinuous in

nature and thus may not require an explicit discontinuity inthe control law. The reach-

ing law proposed by them causes the system states to get arbitrarily closed to the origin.

Various state-based discrete-time control algorithms aredesigned using different reach-

ing laws available in Milosavljevic (1985), Sarpturket al. (1987), Gaoet al. (1995),

Bartolini et al. (1995) and Bartoszewicz (1996, 1998) respectively.

In order to derive the discrete-time control algorithms, let us consider the continuous-

time SISO system as:

ẋ(t) = Ax(t) +Bu(t), (2.23)

y(t) = Cx(t), (2.24)

27



where,x ∈ Rn respresents system state vector,u ∈ Rm represents control input,y ∈ Rp

represents system output,A ∈ Rn×n, B ∈ Rn×m andC ∈ Rp×n are the matrices of

appropriate dimensions.

Let the system (2.23) and (2.24) be discretized ath sampling interval given by,

x(k + 1) = Fx(k) +Gu(k), (2.25)

y(k) = C(k). (2.26)

As discussed earlier, the designed of sliding mode control algorithms involves the de-

sign of sliding surface and reaching law. Let the discrete-time sliding surface be given

by:

s(k) = Csx(k). (2.27)

Various researchers have proposed famous reaching laws in discrete-time domain as

listed below.

• Sarpturk’s Reaching Law: The reaching law proposed by Sarpturk et al. (1987)
is the direct discretization of continuous-time sliding mode given by:

|s(k + 1)| ≺ |s(k)|. (2.28)

Here, the sliding surface is always directed towards the surface and also the norm
of |s(k)| monotonically decreases. The reaching law can be written inother way
as,

(s(k + 1)− s(k))sgn(s(k)) ≺ 0, (2.29)

(s(k + 1)− s(k))sgn(s(k)) ≻ 0. (2.30)

The first condition (2.29) indicates that the closed loop system state trajectories
should move towards the direction of sliding surface and thesecond condition
(2.30) indicates that the closed loop system state trajectories are not allowed to
go too far in that direction. Thus observing condition (2.29) and (2.30), will
lead to lower and upper bounds for control actions. The control law proposed in
[Sarpturket al. (1987)] is given as,

u(k) = −kt(x, s)x(k), (2.31)

where,kt is the gain given by:

kt(x, s) =

{

k+t ; whenx(k)s(k) ≻ 0
k−t ; whenx(k)s(k) ≺ 0

where,k+t and k−t represents the coefficients of each upper bound and lower
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bound of control action that can be determined by evaluatingthe condition (2.29)
and (2.30) respectively.

• Gao’s Reaching Law: The switching based reaching law proposed by Gaoet al.
(1995) is given as,

s(k + 1) = (1− qh)s(k)− ǫhsgn(s(k)), (2.32)

where,h is the sampling interval satisfyingh ≻ 0, q, ǫ ≻ 0 and1− qh ≻ 0.
Using reaching law (2.32), the switching based control law for system (2.25, 2.26)
is computed as,

u(k) = −(CsG)
−1[FCsx(k)− (1− qh)s(k) + ǫhsgn(s(k))]. (2.33)

From above Eqn. (2.33), it can be noticed that there are two parametersq andǫ in
control law for tuning the response. The discrete-time sliding mode control law
proposed in (2.33) should achieve the following performances [Gaoet al. (1995)].
(i) Starting from any initial state, the trajectory will move monotonically toward
the switching plane and cross it in finite time. (ii) Once the trajectory has crossed
the switching plane, it will cross the plane again in every successive sampling
period, resulting in a zigzag motion about the switching plane. and (iii) The size
of each successive zigzag step is nonincreasing and the trajectory stays within a
specified band.
The reaching law in Eqn. (2.32) states that the state vector always move towards
the quasi-sliding mode band given as:

s(k) ≤
ǫh

1− qh
. (2.34)

From Eqn. (2.34), it can be observed thatǫ is directly proportional to quasi-
sliding mode band. Thus if the value ofǫ is too large than the system will have
high overshoots and could also increase the transient response. While on the
other hand the value ofqh should be less than unity otherwise it will speed up the
transient response.

• Bartoszewicz’s Reaching Law: Bartoszewicz (1996, 1998) proposed non-switching
reaching law as,

s(k + 1) = d(k)− d0 + sd(k + 1), (2.35)

where,d(k) is the unknown disturbance,d0 is the mean value of disturbanced(k)
andµd is minimum deviated disturbance withdu as upper bound anddl as lower
bound. Also,d0 andd2 is given by

d0 =
dl+du

2
andd2 =

du−dl
2

sd(k) is an priori known function such that the following applies:

• If s(0) ≻ 2d2 then,

sd(0) = s(0)
sd(k)sd ≥ 0 for anyk ≥ 0
sd(k) ≥ 0 for anyk ≥ k′

|sd(k + 1)| ≺ |sd(k)| − 2d2 for anyk ≤ k′
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These relations state thatsd(k) converges monotonically from its initial position
to the origin of the state space in a finite time. Moreover, in each control step
the hyperplane moves by the distance greater than2d2. This, together with Eqn.
(2.35), states that even in the case of worst combination of disturbance the reach-
ing condition is satisfied.

• If s(0) ≺ 2d2 thensd(k) = 0 for anyk ≥ 0.
The k′ in the above relations is a positive integer user defined constant which
provides the faster convergence rate of the system and magnitude of the control
signalu(k). The control law computed using the reaching law (2.35) for the
system (2.25, 2.26) is given as,

u(k) = (CsG)
−1[CsFx(k) + d0 − sd(k + 1)]. (2.36)

The reaching law in Eqn. (2.35) states that the system state vector always move
towards the QSMB for anyk ≥ k′ such that:

|s(k)| = |d(k − 1)− d0| ≤ d2. (2.37)

• Bartoszewicz’s Reaching Law: Bartoszewicz and Lesniewski(2014) proposed
the other reaching law that provides the faster convergenceof sliding variable
without increasing the amplitude of the control signal. Thereaching law is given
as,

s[(k + 1)h] = {1− q[s(kh)]}s(kh)− Ŝ(kh)− d(kh) + d1 + S1, (2.38)

where,Ŝ(kh) represents the model uncertainty on sliding variable evolution and
d(kh) represents the effect of disturbance on this variable. Further, S1 andd1
represents the mean values ofŜ(kh) andd(kh) repectively given as,

S1 =
Su + Sl

2
, (2.39)

d1 =
du + dl

2
, (2.40)

where,Su, Sl are upper and lower bounds ofS1 anddu, dl are upper and lower
bounds ofd1.
The convergence rate factor ofq[s(kh)] in Eqn. (2.38) is given as,

q[s(kh)] =
ψ

ψ + |s(kh)|
, (2.41)

where,ψ is designer’s constant satisfyingψ ≻ S2 + d2, whereS2 andd2 the
greatest possible deviation ofŜ andd. They are represented as,

S2 =
Su − Sl

2
, (2.42)

d2 =
du − dl

2
. (2.43)

• The control law computed the reaching law (2.38) for the system (2.25, 2.26) is
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given as,

u(k) = (CsG)
−1[CsFx(k) + {1− q[s(kh)]}s(kh) + S1 + d1]. (2.44)

The reaching law in Eqn. (2.38) states that the system statesalways move towards
the QSMB for anyk ≻ k0 such that:

|s(kh)| ≤
ψ(S2 + d2)

ψ − (S2 + d2)
. (2.45)

2.3.4 Advantages of discrete-time sliding mode control over continuous-

time sliding mode control

• With the increase in use of digital computers and microcontrollers for the imple-
mentation of control algorithms, a discrete-time model of the system is justified.

• To validate the better performance of the system it is betterto implement the
discrete-time algorithms rather continuous-time algorithms.

• In continuous-time sliding mode control due to high-frequency switching chat-
tering takes place which may cause damage to the system. So, it is not used for
all practical applications. While, in discrete-time sliding mode control relatively
low switching frequencies are required so DSMC algorithm ismore practical to
implement.

• When continuous-time algorithms are implemented using digital controllers for
implementation, the chattering generated around the sliding mode and stability of
the sliding mode are compromised.

• A large class of discrete-time systems are computer controlled and information
about the system measurements are available only at specifictime instances and
control inputs can only be changed at these time instances. Eg. - biological
systems, thyristor, radar system, economic systems, etc.

2.4 Challenges in NCS with SMC

There are various challenges in network control system withsliding mode control that

has not been explored. Some of them are listed below:

• In literature, the researchers have proposed various SMC algorithms with time
delay compensation [1, 8, 12, 20, 30, 31, 34, 41, 44, 63]. But in all the papers,
it is assumed that the delays are mutiples of sampling interval. However, when
the communication is carried through real-time network thedelays always have
fractional behaviour. Thus, there is need to design SMC for fractional delay in
discrete-time domain.
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• Futhermore, it can also be noticed that none of the literatures on SMC discusses
about the designing of sliding surface that compensates theeffect of fractional
delay. So there is a need of designing the sliding surface such that it compensates
the effect of fractional delay.

• The compensation of network delays and packet loss are done at the controller
side. None of the researcher has tried to compensate their effects in the sliding
surface.

• Till now the sliding mode controllers are designed based on the presence of multi-
ple packet transmission but, the compensation of multiple packets loss with slid-
ing mode control in discrete-time domain is still an open research problem in
NCSs.

• Various researchers have tried to explore their work on designing the sliding mode
controllers based on conventional output feedback method in the presence of net-
work delay and packet loss. But, the compensation algorithmbased on output
feedback method in the field of NCSs have not been much explored.

• The designing of the higher order sliding modes in the presence of network non-
idealities (such as random time delay, packet loss and matched uncertainty) is still
an open research area in NCSs.

2.5 Conclusion

In this chapter, we introduced the basic concept of NCS and its configurations. The

various irregularities of NCS are also discussed. The Sliding Mode Control (SMC)

technique for NCS are also explained and at last challenges for designing the SMC for

NCS are also discussed.
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CHAPTER 3

DESIGN OF DISCRETE-TIME SLIDING MODE

CONTROLLER (SWITCHING TYPE) FOR

FRACTIONAL DELAY

3.1 Introduction

In this chapter, a novel approach for designing a discrete-time sliding mode controller

using Thiran’s delay approximation is presented, to compensate the effect of sensor to

controller fractional delay and controller to actuator fractional delay in discrete-time

domain. The forward channel delay is compensated at the actuator side while feedback

channel delay is compensated at the sliding surface. A novelsliding surface is proposed

using delay compensation and a SMC law is derived. The stability condition for the

closed loop system with proposed controller is derived using Lyapunov function. The

efficacy of the proposed algorithm is shown by simulation results and also validated

by the experimental results considering DC Servo motor as plant in the presence of

deterministic network delays and matched uncertainty.

3.2 Networked Control System with Fractional Delay

Compensation

Figure (3.1) potrays the block diagram of NCS with time delaycompensation scheme.

It can be noticed that the state information as well as control information are transmitted

to the controller and actuator through the network. During transmission, the state in-

formation will experience sensor to controller delay whilethe control information will

suffer from controller to actuator delay. These delays are broadly defined as the amount

of time required for the data packets to travel within the network. Thus, in order to avoid

the degradation it is necessary to compensate these networkdelays at the controller end



as well as at actuator end. Moreover apart from these networkdelays it is necessary to

consider the system delays.

Figure 3.1: Block diagram of NCS with time delay compensation

3.3 Problem Formulation

Consider the linear time invariant SISO system with networkdelay as:

ẋ(t) = Ax(t) +Bu(t− τ) +Dd(t), (3.1)

y(t) = Cx(t), (3.2)

wherex ∈ Rn is system state vector,u ∈ Rm is control input,y ∈ Rp is system output,

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rn×m are the matrices of appropriate dimen-

sions,d(t) is the matched bounded disturbance with|d(t)| ≤ dmax andτ is the total

networked induced delay in continuous-time domain.

The discrete form of system (3.1) and (3.2) is:

x(k + 1) = Fx(k) +Gu(k − τ ′) + d(k), (3.3)

y(k) = Cx(k), (3.4)

whereF = eAh, G =
∫ h

0
eAtBdt, d(k) =

∫ h

0
eAtDd((k + 1)h − t)dt ∈ O(h). Since

|d(t)| ≤ dmax, it can be inferred thatd(k) is also bounded andO(h) [Mehta and Bandy-
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opadhyay (2016)]. For simplicity, it is assumed thatd(k) is slowly varying and remain

constant over the intervalkh ≤ t ≤ (k + 1)h [Mehta and Bandyopadhyay (2016)].

The network induced fractional delay (τ ′) occurring within the network denoted as,

τ ′ =
τ

h
,

whereh is the sampling interval andτ is the total networked induced delay.

Remark − 1: In this work, it is considered that network induced fractional delay (τ ′)

in discrete-time domain have non-interger values so that the precise effect of network

delays are compensated at each sampling instants.

Assumption−1: The total network induced fractional delay is deterministic in nature

satisfying,

τ ≺ h, (3.5)

whereτ indicates the total network delay in continuous-time domain.

Remark − 2: The above condition (3.5) indicates that the values of total network in-

duced fractional delay (τ ′) in discrete-time domain will be less than unity.

The total network induced fractional delay is the combination of sensor to controller

fractional delay (τ ′sc) and controller to actuator fractional delay (τ ′ca) which is given as,

τ ′ = τ ′sc + τ ′ca, (3.6)

where,τ ′sc =
τsc
h

andτ ′ca =
τca
h

.

Assumption− 2: The disturbanced(k) is bounded by upper and lower bound as:

dl ≤ d(k) ≤ du, (3.7)

where,dl anddu denotes lower and upper bound of disturbance.

Remark − 3: In this work, the sensor processing delayτsp, controller computa-

tional delayτcp and actuator processing delayτap are neglected as their values are(1
4
)th

times lesser than network induced delay.
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Problem Statement: To design robust discrete-time sliding mode controller for

the system (3.3,3.4) in the presence of deterministic fractional network delaysτ ′sc and

τ ′ca under the assumptions (1) and (2).

The sliding mode controller design involves the sliding surface design and the con-

trol law that computes the control sequences and steer the states towards the surface.

The next segment proposes the design of sliding surface thatcompensates the effect of

fractional delay occuring from sensor to controller.

3.4 Sliding Surface Design for Deterministic Network

Delays

Tustin approximation and Bilinear transformation are two widely used approaches for

approximation of time delay in discrete-time domain. The main limitation of these two

approaches are that fractional delay cannot be approximated. While, Thiran approxima-

tion [Thiran (1971)] technique approximates the non-integer types of delays in discrete-

time domain. Thiran has proposed the time delay approximation algorithm for maxi-

mally flat group of fractional delays occuring in signal processing applications. Hence

it is proper candidate for fractional delay compensation for discrete-time SMC design.

The fractional delay in discrete-time can be approximated by Thiran’s approximation

as:

z−ν = Σlk=0(−1)k
(

l

k

)

Πl
i=0

2τ ′sc + i

2τ ′sc + k + i
z−k, (3.8)

where,l indicates the order of approximation andν = δ
h

indicates the fractional part of

delay,δ is the delay occuring during signal transmission andh is the sampling interval.

The order of approximation is given by:

l = ceil(ν), (3.9)

where,ceil operator rounds the nearest positive integer greater than or equal toν.

Next, the sliding surface using above approximation is proposed asLemma − 1
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below.

Lemma − 1: The compensated sliding variables(k) for the given system (3.3,3.4)

with sensor to controller network fractional delay (τ ′sc) satisfying condition (3.5) under

the assumptions (1) and (2) is given as:

s(k) = Csx(k)− αCs(x(k − 1)), (3.10)

where,

α = τ ′sc
τ ′sc+1

andCs is the sliding gain.

Proof : The sliding variable with the delayed state vector at the receiving end of con-

troller is given by:

s(k) = Csx(k − τ ′sc), (3.11)

where,τ ′sc is the sensor to controller fractional delay. The sliding gain Cs is calculated

using discrete LQR method through proper selection of Q and Rmatrices.

Applying z-Transform to Eqn. (3.11) we get,

s(z) = Csx(z)z
−τ ′sc , (3.12)

where,τ ′sc = ν = τsc
h

.

It is assumed that total fractional delay (τ ′) is less than unity. Consideringτ ′sc ≺ 1 and

using Eqn. (3.9),z−τ
′

sc can be approximated as,

z−τ
′

sc = Σ1
k=0(−1)k

(

l

k

)

Π1
i=0

2τ ′sc + i

2τ ′sc + k + i
z−k. (3.13)

The above Eqn. (3.13) can be further expanded as,

z−τ
′

sc = [(−1)0
(

1

0

){

2τ ′sc
2τ ′sc

∗
2τ ′sc + 1

2τ ′sc + 1

}

z0 + (−1)1
(

1

1

)

(3.14)
{

2τ ′sc
2τ ′sc + 1

∗
2τ ′sc + 1

2τ ′sc + 2

}

z−1].

On simplifying we get,

z−τ
′

sc = 1− αz−1, (3.15)
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where,α = τ ′sc
τ ′sc+1

.

Figures (3.2) and (3.3) shows the step response of delayed and non-delayed system

for τ ′sc=1 andτ ′sc=0.5 respectively. It can be noticed that Thiran’s Approximation ap-

proximates the fractional delay accurately and at each sampling instants the effect of

fractional delay is nullified. It can be further extended that the step response of delay

system is same as that of the non-delayed system that is computed through Thiran Ap-

proximation.
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Figure 3.2: Step reponse of Thiran Approximation withτ ′sc=1
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Figure 3.3: Step reponse of Thiran Approximation withτ ′sc=0.5

Thus, substituting Eqn. (3.15) into (3.12),

s(z) = Csx(z)[1 − αz−1]. (3.16)

Further expanding it, we may get

s(z) = Csx(z)− αCsz
−1x(z). (3.17)
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Applying inversez-Transform, we may have

s(k) = Csx(k)− αCssx(k − 1). (3.18)

This completes theproof .

From Eqn. (3.18), it is inferred that the network induced fractional delay from sen-

sor to controller can be compensated in the sliding surfaces(k) at each sampling instant

h using the information of immediate past state, the current state and parameterα.

Now, we are ready to design a sliding mode control law using the proposed sliding

surface (3.18).

3.5 Discrete-Time Sliding Mode Control (Switching type)

for NCS Using Thiran’s Delay Approximation

In this section, switching type control law alongwith its stability is proposed based on

Gao’s reaching law [Gaoet al. (1995)] using compensated sliding surface (3.18). The

Gao’s reaching law provides the faster convergence within the specified quasi-sliding

mode band.

Theorem − 1: The discrete-time sliding mode controller for system(3.3, 3.4) in

the presence of deterministic fractional delays satisfying (3.5) and matched uncertainty

d(k) is given as,

u(k) = −(CsG)
−1[Mx(k)−Nx(k)− (1− qh)(s(k)) + ǫhsgn(s(k))]− d(k).(3.19)

where,

M = (CsF ) andN = αCs.

Proof : Let us consider the reaching law in [Gaoet al. (1995)] with sensor to con-
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troller fractional delay as:

s[(k + 1)] = (1− qh)s(k)− ǫhsgn(s(k)), (3.20)

where,

q, ǫ ≻ 0, 0 ≺ (1 − qh) ≺ 1, sgn is the signum function,h represents the sampling

interval ands(k) is the compensated sliding surface (3.18).

The reaching law in Eqn. (3.20) states that the state vector always move towards the

quasi sliding mode band given as:

s(k) ≤
ǫh

2− qh
. (3.21)

Substituting Eqn. (3.18) in Eqn. (3.20), we may get:

Csx(k + 1)− αCsx(k) = (1− qh)s(k)− ǫhsgn(s(k)).

Substituting the value ofx(k + 1), we get

Cs[Fx(k) +G(u(k) + d(k))]− αCsx(k) = (1− qh)s(k)− ǫhsgn(s(k)). (3.22)

Further, simplifying we may write above Eqn. (3.22) as,

Cs[Fx(k) +G(u(k) + d(k))]− αCsx(k) = (1− qh)s(k)− ǫhsgn(s(k)). (3.23)

Further, above Eqn. (3.23) can be expressed as a control law

u(k) = −(CsG)
−1[Mx(k)−Nx(k) + (1− qh)(s(k))− ǫhsgn(s(k))]− d(k).(3.24)

where,

M = (CsF ) andN = αCs.

This completes theproof .

The stability condition is derived further using compensated sliding surface (3.18)

and control law proposed in Eqn. (3.24) such that the system states remain within
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specified band (3.21) for a finite interval of time.

3.5.1 Stability Analysis

The state trajectories of the closed loop system (3.3,3.4) with network delay(τ ′) and

matched uncertaintyd(k) with the controller (3.24) drive towards the sliding surface

(3.18) and maintains on it for anyq, ǫ, β ≻ 0, 0 ≺ 1− qh ≺ 1 and1− qh ≺ ǫ provided

the following condition hold true:

0 � Φ ≺ sT (k)s(k). (3.25)

Proof : The compensated sliding surface (3.18) is given by:

s(k) = Csx(k)− αCsx(k − 1). (3.26)

Selecting the Lyapunov function as:

Vs(k) = sT (k)s(k). (3.27)

Writing forward difference of the above Eqn. (3.27),

∆Vs(k) = sT (k + 1)s(k + 1)− sT (k)s(k). (3.28)

Substituting the value ofs(k + 1) using Eqn. (3.26) we get,

∆Vs(k) = [Csx(k + 1)− αCsx(k)]
T [Csx(k + 1)

−αCsx(k)]− sT (k)s(k). (3.29)

Substituting the value ofx(k + 1),

∆Vs(k) = [Cs[Fx(k) +G(u(k) + d(k))]− αCsx(k)]
T (3.30)

[CsFx(k) +G(u(k) + d(k))]− αCsx(k)]− sT (k)s(k).
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Substituting the value ofu(k) from Eqn. (3.24) and further solving it we have,

∆Vs(k) = [(1− qh)s(k)− ǫhsgn(s(k))]T ∗ [(1− qh) (3.31)

s(k)− ǫhsgn(s(k))]− sT (k)s(k).

Denoting,

Φ = [(1− qh)s(k)− ǫhsgn(s(k))]T ∗ [(1− qh)s(k)− ǫhsgn(s(k))]

Then we have,

∆Vs(k) = Φ− sT (k)s(k). (3.32)

The termΦ can be tuned close to zero by appropriately selecting the parameterq

andǫ. If Φ is closed to zero, thensT (k)s(k) will be larger thanΦ. Thus, for any small

parameterβ, we haveΦ− sT (k)s(k) ≺ βsT (k)s(k).

Thus, by tuning the parameterq andǫ, we have,∆Vs(k) ≺ βsT (k)s(k) which guaran-

tees the convergence of∆Vs(k) and implies that any trajectory of the system (3.3,3.4)

will be driven onto the sliding surface and maintain on it.

This completes theproof .

The control signalu(k) computed in (3.24) using compensated sliding surface (3.10),

will also experience controller to actuator fractional delay (τ ′ca) which results in the de-

layed control signalu(k − τ ′ca). So, in order to avoid the degradation of the plant

response again the time delay is compensated from controller to actuator. The compen-

sated control signal at the actuator end can be represented as:

ua(k) = u(k)− α′u(k − 1), (3.33)

where,

α′ = τ ′ca
1+τ ′ca

.

It can be noticed from above Eqn. (3.33) that the compensatedcontrol signalua(k) de-
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pends on difference of the present control signal that is available from network as well

as past control signal which is multiplied over the parameter α′ approximated through

Thiran Approximation. Thus the effect of controller to actuator fractional delay is com-

pensated at actuator side which is further applied to the plant.

3.6 Results and Discussions

This section briefly discusses about the simulation resultsas well as experimental results

of the proposed control algorithm in the presence of deterministic network delays and

matched uncertainty. The efficiency and robustness of the proposed control algorithm

is tested considering DC Servo Motor as real time plant. On real time implementation

the effects of control algorithm are examined in the presence of network non-idealities

(fractional time delay and matched uncertainty).

3.6.1 System Description

In this section, Quanser Qnet 2.0 brushed DC motor setup is explained in detailed on

which the simulation as well as experimental results are carried out using proposed

control law. The performance of the Brushless DC Motor is tested under different net-

worked delays as well external disturbances to prove the robustness of the proposed

algorithm. The results obtained with proposed algorithm iscompared with the conven-

tional SMC algorithm.

Figure 3.4: Block Diagram of Qnet DC Servo Motor Components

Figure (3.4) shows the block diagram of Quanser made Qnet 2.0brushed DC motor

setup used for the simulation as well as experimental purpose. The QNET DC Motor

provides an integrated amplifier and a communication interface with the NI ELVIS II

(+) for the amplifier command and encoder port. The NI ELVIS II(+) is interfaced

to the PC via USB link to the QNET DC Motor setup as shown in Figure (3.5). The
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Figure 3.5: Experimental Setup of Quanser DC Servo Motor

NI ELVIS II (+) block reads the angular encoder as an input andcommands the power

amplifier which acts as driver for the motor. The various network delays are generated

through software blocks.

The detailed mathematical model along with the system parameters of the DC motor

are given as [Astromet al. (2015)]:

θ(s)

Vm(s)
=

Km

JmRms2 +K2
ms
, (3.34)

where,

θ(s)=output from the system (position),

Vm=input to the system,

Jm=Rotor inertia=4 ∗ 10−6kgm2,

Rm=Terminal Resistance=8.4 ohms,

Km=Motor back emf constant=0.042 V/(rad/s).

Substituting these parameters, the state space model of theabove system (3.34) is given

as,

ẋ(t) = Ax(t) +Bu(t− τ) +Dd(t), (3.35)

y(t) = Cx(t), (3.36)

where,

A =





−201 0

1 0



, B =





1

0



,
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C =
[

0 1
]

,D =





1

1



.

Discretizing the system at sampling intervalh = 30msec, we get,

x(k + 1) = Fx(k) +Gu(k − τ ′) + d(k), (3.37)

y(k) = Cx(k), (3.38)

where,

F =





0.001836 0

0.004753 1



,G =





0.004753

−0.0001242



,

C =
[

0 1
]

.

3.6.2 Simulation and Experimental Results of Brushless DC Motor

In this section, the simulation and experimental results ofPosition Control DC motor

are thoroughly discussed in presence of deterministic network delays. Figures (3.6) to

(3.10) shows the simulation and experimental responses of system for trajectory track-

ing, compensated sliding variable and control efforts under different network delays. To

show the robustness properties slow time varying disturbance signal is applied through

the input channel. The total networked induced delay with a range of12.8msec to

28msec is generated through network block for which the effect of delay is compen-

sated satisfying condition (3.5). The position of DC motor is considered as the refer-

ence input. The sliding gain is computed using discrete LQR method which comes out

Cs = [2.5156 31.6288] with Q = diag(1000, 1000) andR = 1. While the quasi-

sliding band (3.21) comes out to be|s(k)| ≤ −5 to 5 with tunning parametersq = 30

andǫ = 2000.

Figures (3.6(a)) to (3.7(d)) shows the simulation and experimental results of position

control DC motor plant for total network delay ofτ = 12.8msec with τsc = 6.4msec

andτca = 6.4msec. The fractional part of total network delay is obtained asτ ′ = 0.426,

τ ′sc = 0.213 andτ ′ca = 0.213 for h = 30msec. The trajectory response of the system

in case of simulation and experimental are shown in Figures (3.6(a)) and (3.6(b)) re-

spectively. In both cases, the output tracks the reference trajectory in the presence of

specified network delay. In order to show the exact effect of time delay compensation
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(a) Simulated response of Position control for
τ=12.8msec
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(b) Experimental response of Position control for
τ=12.8msec
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(c) Magnified simulated response of Position control
for τ=12.8msec
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(d) Magnified experimental response of Position
control forτ=12.8msec
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(e) Simulated compensated sliding variable for
τ=12.8msec

Time (sec)
0 10 20 30 40 50 60 70 80 90 100

 S
lid

in
g 

V
ar

ia
bl

e

-5

0

5

10

(f) Experimental compensated sliding variable for
τ=12.8msec
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(g) Magnified simulated response ofs(k) for
τ=12.8msec
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(h) Magnified experimental response ofs(k) for
τ=12.8msec

Figure 3.6: Simulation as well as Experimental results for tracking and compensated
sliding surface forτ=12.8msec.
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(a) Simulated control efforts forτ=12.8msec
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(d) Magnified experimental control efforts for
τ=12.8msec
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(e) Simulated response of Position control for
τ=24msec
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(f) Experimental response of Position control for
τ=24msec
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(g) Magnified simulated response of Position control
for τ=24msec
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(h) Magnified experimental response of Position
control forτ=24msec

Figure 3.7: Simulation as well as Experimental results of control signal and tracking
response forτ=12.8msec andτ=24msec.
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(a) Simulated compensated sliding variable for
τ=24msec
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(b) Experimental compensated sliding variable for
τ=24msec
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(c) Magnified simulated response ofs(k) for
τ=24msec
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(d) Magnified experimental response ofs(k) for
τ=24msec
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(e) Simulated control efforts forτ=24msec
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(f) Experimental control efforts forτ=24msec
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(g) Magnified simulated control efforts for
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(h) Magnified experimental control efforts for
τ=24msec

Figure 3.8: Simulation as well as Experimental results of compensated sliding surface
and control signal forτ=24msec.
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(a) Simulated response of Position control for
τ=28msec
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(b) Experimental response of Position control for
τ=28msec
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(c) Magnified simulated response of Position control
for τ=28msec
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(d) Magnified experimental response of Position
control forτ=28msec
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(e) Simulated compensated sliding variable for
τ=28msec
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(f) Experimental compensated sliding variable for
τ=28msec
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(g) Magnified simulated response ofs(k) for
τ=28msec
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(h) Magnified experimental response ofs(k) for
τ=28msec

Figure 3.9: Simulation as well as Experimental results of tracking and compensated
sliding surface forτ=28msec.
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(a) Simulated control efforts forτ=28msec
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(b) Experimental control efforts forτ=28msec
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(c) Magnified control efforts forτ=28msec
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(d) Experimental tracking response of Position con-
trol under external disturbance

Figure 3.10: Simulation as well as Experimental results of control efforts forτ=28msec
along with tracking response under external disturbances.

at the output, results are magnified as shown in Figures (3.6(c)) and (3.6(d)). It can be

noticed that the effect of fractional time delay from sensorto controller is compensated

as the output tracks the trajectory at6.4msec. The same effect of time delay compen-

sation from sensor to controller can be observed in sliding surface Figures (3.6(e)) and

(3.6(f)) as well as control signal Figures (3.7(a)) and (3.7(b)). Observing the magnified

results of Figures (3.6(g)), (3.6(h)), (3.7(c)) and (3.7(d)) it can be noticed that the sliding

surface and control signal both are computed at first sampling instant even in the pres-

ence of sensor to controller delay. Thus, the effects of fractional delay from sensor to

controller at sliding surface and control signal are compensated and remains within the

specified sliding band (3.21). The proposed algorithm was further extended for higher

values ofτ . Figures (3.7(e)) to (3.8(h)) shows the simulation and experimental results of

position control DC motor for total networked delay ofτ = 24msecwith τsc = 12msec

andτca = 12msec. The fractional part of total network delay is computed asτ ′ = 0.8,

τ ′sc = 0.4 andτ ′ca = 0.4 for h = 30msec. The simulated and experimental trajectory re-

sponse of the system are shown in Figures (3.7(e)) and (3.7(f)) respectively. Observing

the results it can be noticed the output tracks the referencesignal in the specified net-

worked delay. In order to show the effect of delay compensation the output results are

magnified shown in Figures (3.7(g)) and (3.7(h)) respectively. It can be noticed that the

effect of fractional delay from sensor to controller is nullified as the output tracks the

reference trajectory att = 12msec. The similar effect of time delay compensation can

be observed in sliding surface as well as control efforts signal shown in Figures (3.8(a))
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to (3.8(h)). Observing the simulated and experimental magnified results of sliding sur-

face [(3.8(c)) and (3.8(d))] as well as control signal [(3.8(g)) and (3.8(h))], it can be

noticed that, in both the cases the sliding surface and control signal are computed at

first sampling instant. Thus the fractional delay from sensor to controller is compen-

sated and remains within the specified sliding band (3.21). Figures (3.9(a)) to (3.10(c))

shows the simulation and experimental results of position control DC motor for total

networked delay ofτ = 28msec with τsc = 14msec andτca = 14msec. The fractional

part of total networked delay forh = 30msec is obtained asτ ′ = 0.933, τ ′sc = 0.466

andτ ′ca = 0.466 respectively. The simulation and experimental results with magnified

response of reference trajectory are shown in Figures (3.9(a)) to (3.9(d)) respectively.

Observing the results it can be concluded that the output tracks the reference trajec-

tory at t = 14msec for the specified networked delay. Thus the effect of fractional

delay from sensor to controller is nullified at the output as shown in Figures (3.9(c))

and (3.9(d)). The similar effect of time delay compensationwill be observed in slid-

ing surface and control signal results shown in Figures (3.9(e)) to (3.10(c)). Observing

the results it can be noticed that in simulation as well as experimental case the sliding

surface and the control signal are computed from first sampling instant. Thus the effect

of fractional delay from sensor to controller is compensated at sliding surface as well

as at control signal. Apart from delay compensation, the position of motor was also

controlled by applying the external disturbances through rotating the wheel in forward

and reverse direction. The situation of motor under external disturbances is shown in

Figure (3.10(d)).

Thus, from all the results it can be concluded that the proposed algorithm works effi-

ciently with network delay range of12.8msec ≤ τ ≤ 28msec in experimental as well

as in simulated enviornment. The proposed controller compensates the network time

delay forq = 30 andǫ = 2000 satisfying (3.5) and shows the stable response satisfying

condition (3.25) in the presence of matched uncertainty.

Comparison of proposed algorithm with conventional sliding mode control

In this section, the experimental results of proposed algorithm are compared with con-

ventional sliding mode control. The sliding surface and control algorithm for conven-
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(a) Position control of DC motor using proposed al-
gorithm forτ=12.8msec
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(b) Position control of DC motor using conventional
SMC algorithm forτ=12.8msec
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(c) Compensated sliding variable of proposed algo-
rithm for τ=12.8msec
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(d) Compensated sliding variable of conventional
SMC algorithm forτ=12.8msec
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(e) Control efforts response of proposed algorithm
for τ=12.8msec
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(f) Control efforts response of conventional SMC al-
gorithm forτ=12.8msec

Figure 3.11: Comparison of proposed algorithm and conventional sliding mode control
for τ=12.8msec

tional sliding mode control is defined as:

sc(k) = Csx(k − τ ′sc),

u(k) = −(CsG)
−1[Csx(k − τ ′sc)− (1− qh)(sc(k)) + ǫhsgn(sc(k))]− d(k − τ ′sc).

The results of tracking response, control signal and sliding variable for total networked

delay of τ = 12.8msec are shown in Figures (3.11(a)) to (3.11(f)). From the com-

parative results it can be noticed that the conventional sliding mode control becomes

unstable for a small delay ofτsc = 6.4msec. Thus, the Thiran’s approximation proved

to be efficient method in discrete-time sliding mode control. Simulation and experi-

mental results for different networked delays range are summarized in Table-3.1. The
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Network Delays (τ ) Simulations or Experimental
Chattering Design performance

12.8msec within QSMB satisfactory
24msec within QSMB satisfactory
28msec within QSMB satisfactory

Table 3.1: Simulations and Experimental Results Under different Networked Delays

Algorithm Comparison Results
τ Ts Chattering Response

Coventional SMC 12.8msec Undefined high unstable
Proposed method 12.8msec 1sec within QSMB stable

Table 3.2: Comparison of Proposed Algorithm with Conventional SMC

comparison of discrete-time sliding mode control with timedelay approximation and

conventional sliding mode control are shown in Table- 3.2.

3.7 Conclusion

In this chapter, we explored Thiran’s approximation technique for fractional delay com-

pensation in discrete-time domain. The effect of fractional delay generated due to the

communication medium is compensated in sliding surface. The sliding surface is de-

signed in such a manner that the system states slides along the predetermined surface

according to network delay. Using this approach, switchingtype discrete-time sliding

mode controller is designed which computes the control actions in the presence of net-

work delay and matched uncertainty. The stability of the closed loop NCS is assured

by using Lyapunov approach. The effectiveness of the derived algorithm is tested on

brushless DC motor setup with deterministic networked delay and matched uncertainty.

The experimental results are compared with conventional SMC algorithm. The compar-

ative results proved that the fractional delay approximated using Thiran Approximation

is most efficient technique as it compensates the fractionalnetwork delays in discrete-

time domain in the presence of matched as well as unmatched uncertainties.
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CHAPTER 4

DESIGN OF DISCRETE-TIME SLIDING MODE

CONTROLLER (NON-SWITCHING TYPE) FOR

FRACTIONAL DELAY

4.1 Introduction

In this chapter, a unique approach is presented for designing non-switching discrete-

time sliding mode controller using Thiran’s delay approximation. The effect of sensor

to controller delay is compensated using Thiran’s delay approximation technique in

sliding surface. Further, Lyapunov approach is used to determine the stability of closed

loop NCSs with proposed controller. The feasibility and effectiveness of the control

methodology are outlined through simulation and experimental results showing the sig-

inificant response in the presence of networked delay. The efficacy of the proposed

control algorithm is further validated in the presence of real time networks such as

CAN and Switched Ethernet using True Time Simulator.

4.2 Problem Formulation

Remark− 4: In this chapter nature of the system, total fractional network delays (τ ′),

sensor to controller fractional delay (τ ′sc) and controller to actuator fractional delay (τ ′ca)

would remain same as mentioned in section (3.3).

Problem Statement: The main objective, is to design non-switching based discrete-

time sliding mode control law for system (3.3,3.4) in the presence of fractional delay

τ ′sc andτ ′ca satisfying (3.5) and matched uncertainty satisfying (3.7).



The next section describes the design of non-switching typesliding mode control

law using the proposed sliding surface (3.18).

4.3 Discrete-Time Sliding Mode Control (Non-Switching

type) Using Thiran’s Delay Approximation

In this section, non-switching type control law alongwith its stability is proposed based

on reaching law in [Bartoszewicz and Lesniewski (2014)] using compensated sliding

surface (3.18). The reaching law proposed by Bartoszewicz causes less chattering com-

pare to Gao’s law and offers faster covergence with limited magnitude of the control

signal.

Theorem−2: The non-switching discrete-time sliding mode controllerfor system

(3.3, 3.4) in the presence of deterministic sensor to controller fractional delay satisfying

(3.5) and matched uncertaintyd(k) is given as,

u(k) = −(CsG)
−1[Hx(k)− Ix(k)− J(s(k)) + ds(k)− d1]− d(k). (4.1)

where,

H = (CsF ), I = αCs, J = {1− q[s(k)]}.

Proof : Let us consider the reaching law in [Bartoszewicz and Lesniewski (2014)]

in the presence of sensor to controller fractional delay given as:

s[(k + 1)h] = {1− q[s(k)]} − ds(k) + d1, (4.2)

where,

whereds(k) is disturbance at the controller end,q[s(k)] = ψ

ψ+|s(k)|
with ψ as user

defined constant satisfyingψ ≥ d2, d1 andd2 are mean and deviation ofd(k).

Remark−5: The disturbaced(k) appearing in the reaching law is applied through the
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network. So, the compensated disturbance using Thiran’s approximation is given as:

ds(k) = d(k)− αd(k − 1). (4.3)

The reaching law in Eqn. (4.2) indicates that the system states always move towards the

specified sliding band given as:

|s(k)| ≤
ψd2
ψ − d2

. (4.4)

Substituting Eqn. (3.18) into Eqn. (4.2) we may get:

Csx(k + 1)− αCsx(k) = {1− q[s(k)]} − ds(k) + d1,

and substituting the value ofx(k + 1) we get,

Cs[Fx(k) +G(u(k) + d(k))]− αCsx(k) = {1− q[s(k)]} − ds(k) + d1.

Further simplifying we may write,

CsFx(k) + CsG(u(k) + d(k))− αCsx(k) = {1− q[s(k)]} − ds(k) + d1. (4.5)

Further, solving the above Eqn. (4.5), control law can be expressed as:

u(k) = −(CsG)
−1[Hx(k)− Ix(k)− J(s(k)) + ds(k)− d1]− d(k). (4.6)

where,

H = (CsF ), I = αCs andJ = {1− q[s(k)]}

This completes theproof .

The stability condition is derived further using compensated sliding surface (3.18) and

control law proposed in Eqn. (4.6) such that the system states remain within specified

band (4.4) over a finite interval of time.
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4.3.1 Stability Analysis

For given positive scalarsτ ′sc andτ ′ca with total networked delayτ ′ satisfying (3.5), the

trajectories of the closed loop system (3.3,3.4) with controller (4.6) andd(k) satisfying

(3.7) drive towards the sliding surface (3.18) such that thefollowing condition (4.7) is

feasible:

0 � κ ≺ sT (k)s(k). (4.7)

Proof : The compensated sliding surface is given by,

s(k) = Csx(k)− αCsx(k − 1). (4.8)

Selecting the Lyapunov function as,

Vs(k) = sT (k)s(k). (4.9)

Writing forward difference of the above equation,

∆Vs(k) = sT (k + 1)s(k + 1)− sT (k)s(k). (4.10)

Substituting the value ofs(k + 1) using Eqn. (4.8) we get,

∆Vs(k) = [Csx(k + 1)− αCsx(k)]
T [2Csx(k + 1)

−αCsx(k)]− sT (k)s(k). (4.11)

Substituting the value ofx(k + 1),

∆Vs(k) = [Cs[Fx(k) +G(u(k) + d(k))]− αCsx(k)]
T (4.12)

[CsFx(k) +G(u(k) + d(k))]− αCsx(k)]− sT (k)s(k).

Substituting the value ofu(k) from Eqn. (4.6) and further solving it we have,

∆Vs(k) = [(1− q[s(k)])s(k)− ds(k) + d1]
T ∗ [(1− q[s(k)]) (4.13)

s(k)− ds(k) + d1]− sT (k)s(k).
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Denoting,

κ = [(1− q[s(k)])s(k)− ds(k) + d1]
T ∗ [(1− q[s(k)])s(k)− ds(k) + d1]

Then we have,

∆Vs(k) = κ− sT (k)s(k). (4.14)

The termκ can be tuned close to zero by appropriately selecting the parameterψ. If

κ is closed to zero, thensT (k)s(k) will be larger thanκ. Thus, for any small parameter

η, we haveκ− sT (k)s(k) ≺ ηsT (k)s(k).

Thus, by tuning the parameterψ, we have,∆Vs(k) ≺ ηsT (k)s(k) which guarantees the

convergence of∆Vs(k) and implies that any trajectory of the system (3.3,3.4) willbe

driven onto the sliding surface and maintain on it.

This completes theproof .

4.4 Results and Discussions

This section briefly discusses about the simulation resultsas well as experimental re-

sults of the proposed control algorithm in the presence of deterministic network delays

and matched uncertainty. The efficiency and robustness of the proposed control algo-

rithms are tested under three different situations: (i) illustrative example (ii) real time

plant as DC servo motor and (iii) real time networks.

4.4.1 Simulation Results with Illustrative Example

In this segment an illustrative example from [Wu and Chen (2007)] is simulated in

MATLAB environment.

Consider the continuous-time LTI system as,
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ẋ(t) = Ax(t) +Bu(t− τ) +Dd(t), (4.15)

y(t) = Cx(t), (4.16)

where,

A =





−0.7 2

0 −1.5



, B =





−0.03

−1



,

C =
[

1 0
]

,D =





1

1



.

Discretizing the above system parameters at sampling interval of h = 30msec,

x(k + 1) = Fx(k) +Gu(k − τ ′) + d(k), (4.17)

y(k) = Cx(k), (4.18)

where,

F =





0.9792 0.05805

0 0.956



,G =





−0.001771

−0.02934



,

C =
[

1 0
]

.
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Figure 4.1: Slow time varying disturbanced(k)

Figures (4.2) to (4.13) shows the nature of the system under networked enviornment.

In order to check the robustness of the derived control law a slow time varying distur-
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Figure 4.4: State variablex2 with initial conditionx2=1
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Figure 4.5: Magnified result of state variablesx1, x2

bance is applied at the input of the system as shown in Figure (4.1). Figure (4.2) shows

the deterministic network induced fractional delay with range of3msec ≤ τ ≤ 20msec
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Figure 4.7: Magnified result of compensated sliding surfaces(k)
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Figure 4.8: Control signalu(k)
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Figure 4.9: Compensated control signalua(k)

under which the system shows the stable response satisfying(3.5). In this work, net-

work delay is considered as the time required for the data packets to travel from sensor

61



Time (Sec)

0

C
o
m
p
en

sa
te
d
C
o
n
tr
o
l
S
ig
n
a
l
u
a
(k
)

0

10

20

30

40

Figure 4.10: Magnified compensated control signalua(k)

Time (sec)
0 6 12 18 24 30

S
N

R

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 4.11: Response of SNR

Time (sec)
0 6 12 18 24 30

S
ta
te
s
(x

1
,x

2
)

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.12: Nature of state variables for different SNR
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Figure 4.13: Result of Stability

to controller and controller to actuator. The time requiredfor data packets to travel

from sensor to controller is1.5msec ≤ τsc ≤ 10msec and for controller to actuator is
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1.5msec ≤ τca ≤ 10msec respectively. The sliding gainCs is calculated using discrete

LQR method withQ = diag(1000, 1000) andR = 1. The computed values of sliding

gain areCs = [−1.77 −2.766]. The quasi-sliding mode band computed to be|s(k)| ≤

+0.2 to −0.2 with proper selection of user defined constantψ = 100.

Figures (4.3) and (4.4) shows the plant state variables withinitial conditionx(k) = [1 1].

Both the states converges to zero from given initial condition in the presence of network

fractional delay. Figure (4.5) shows the magnified result ofthe plant state variables. It

can be noticed that the effect of network fractional delay atthe ouptut of the system is

compensated as it is computed from first sampling instant. Figure (4.6) shows the com-

pensated sliding surface calculated using Thiran approximation rule. It can be observed

that the compensated sliding variable is computed from firstsampling instant even in the

presence of sensor to controller fractional delay. The magnified response of the same

is shown in Figure (4.7). Figure (4.8) shows the control signal u(k) which is computed

using proposed compensated sliding surfaces(k). This control signal is further applied

to the plant through the network. The same approach of time delay compensation is

used to compute the compensated control signalua(k). The result of the same is shown

in Figure (4.9). From the magnified result in Figure (4.10), it can be justified that the

effect of controller to actuator fractional delay is also compensated as the control signal

is computed from first sampling interval.

The algorithm is also examined for different SNR as shown in Figure (4.11). It can be

observed from Figure (4.12) that the system states coverge to zero for different SNR.

Figure (4.13) shows the results of stability. It can be observed from Figure (4.13) that

for givenψ = 100 andd2 = 0.2 guarantees the covergence of∆Vs(k) and implies that

the trajectories of system (3.3,3.4) will be driven on the compensated sliding surface

and maintain on it under the specified network fractional delay and matched uncer-

tainty. Thus, from above results it is justified that Thiran approximation provides better

compensation in discrete-time domain in the presence of deterministic network delays

and matched uncertainty.
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4.4.2 Simulation and Experimental Results of Brushless DC Motor

The state space model of the system (3.34) is given as,

ẋ(t) = Ax(t) +Bu(t− τ) +Dd(t), (4.19)

y(t) = Cx(t), (4.20)

where,

A =





−201 0

1 0



, B =





1

0



,

C =
[

0 1
]

,D =





1

1



.

Discretizing the system at sampling intervalh = 30msec, we get,

x(k + 1) = Fx(k) +Gu(k − τ ′) + d(k), (4.21)

y(k) = Cx(k), (4.22)

where,

F =





0.001836 0

0.004753 1



,G =





0.004753

−0.0001242



,

C =
[

0 1
]

.

This section briefs about the simulation and experimental results of Position con-

trol Brushless DC motor in the presence of various deterministic delays using non-

switching control law. The effect of time delay compensation are deeply analyzed

through tracking response, compensated sliding variable and control signal for different

network delays as shown in Figures (4.14) to (4.18). The robustness of the proposed

algorithm is determined by applying time varying disturbance signal at the input side

of the channel. The total networked induced delay with a range of 10msec to 28msec

was generated for which the effect of time delay is compensated satisfying condition

(3.5). The sliding gain is computed through discrete LQR method which comes out

to beCs = [24.5156 31.6288] with Q = diag(1000, 1000) andR = 1. The quasi-

sliding mode band computed to be|s(k)| ≤ +0.2 to−0.2 with proper selection of user

defined constantψ = 1500. Figures (4.14(a)) to (4.15(d)) shows the simulated and ex-

perimental results of position control brushless DC motor for total networked induced
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(b) Experimental result of Position control for
τ=10msec
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(c) Magnified simulated result of Position control for
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(d) Magnified experimental result of Position control
for τ=10msec
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(e) Simulated result of compensated sliding variable
for τ=10msec
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Figure 4.14: Simulation as well as Experimental results of tracking and compensated
sliding surface forτ=10msec
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(e) Simulated result of Position control for
τ=18msec
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(f) Experimental result of Position control for
τ=18msec
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(g) Magnified simulated result of Position control for
τ=18msec
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Figure 4.15: Simulation as well as Experimental results of control signal and tracking
response forτ=18msec andτ=24msec
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(a) Simulated result of compensated sliding variable
for τ=18msec
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(b) Experimental result of compensated sliding vari-
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(h) Magnified experimental control signal for
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Figure 4.16: Simulation as well as Experimental results of compensated sliding surface
and control signal forτ=18msec
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(a) Simulated result of Position control for
τ=28msec
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(b) Experimental result of Position control for
τ=28msec
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(c) Magnified simulated result of Position control for
τ=28msec
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(d) Magnified experimental result of Position control
for τ=28msec
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(e) Simulated result of compensated sliding variable
for τ=28msec
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Figure 4.17: Simulation as well as Experimental results of tracking and compensated
sliding surface forτ=28msec
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(a) Simulated control signal forτ=28msec
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(b) Experimental control signal forτ=28msec
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(c) Simulated Magnified control signal for
τ=28msec
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(d) Experimental Magnified control signal for
τ=28msec

Figure 4.18: Simulation as well as Experimental results of control signal forτ=28msec
along with tracking response

delay ofτ = 10msec with τsc = 5msec andτca = 5msec. The fractional part of total

networked delay for sampling interval ofh = 30msec is computed to beτ ′ = 0.33,

τ ′sc = 0.166 andτ ′ca = 0.166 respectively. Figures (4.14(a)) and (4.14(b)) shows the

simulated as well as experimental trajectory results of theplant. It can be observed that

the position of DC motor is controlled according to variations in the reference inputs

without chattering even in the presence of specified networkdelay. The tracking results

are magnified as shown in Figures (4.14(c)) and (4.14(d)) in order to examine the ef-

fect of time delay compensation. It can be noticed that in both the cases the fractional

part of the delay from sensor to controller is compensated asthe position of the motor

commence the reference input signal at5msec. The same consequence of time delay

compensation is observed in sliding variable (4.14(e)) and(4.14(f)) as well as control

signal (4.15(a)) and (4.15(b)) respectively. Observing the magnified results (4.14(g)),

(4.14(h)), (4.15(c)) and (4.15(d)) it can be noticed that the compensated sliding vari-

able and control signal both are computed from first samplinginstants. Thus, the effect

of fractional delay from sensor to controller is compensated at the sliding surface and

control signal. The proposed algorithm was further examined for τ = 18msec and

28msec respectively. Figures (4.15(e)) to (4.15(h)) shows the results of position con-

trol brushless DC motor. The results are carried out under the total networked delay

of τ = 18msec with τsc = 9msec andτca = 9msec. The fractional part of delay for

h = 30msec is computed asτ ′ = 0.6, τ ′sc = 0.3 andτ ′ca = 0.3 respectively. The sim-
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ulated and experimental tracking results of the plant for the specified networked delay

are shown in Figures (4.15(e)) and (4.15(f)). It can be noticed that in both the cases the

position of DC motor is controlled for all given reference inputs. In order to examine

the effect of fractional time delay compensation the same results are magnified in Fig-

ures (4.15(g)) and (4.15(h)). It can be noticed that the effect of fractional delay from

sensor to controller is nullified as the output follows the reference signal att = 9msec.

The same effect of time delay compensation is observed in sliding variable (4.16(a))

and (4.16(b)) as well as control signal (4.16(e)) and (4.16(f))). Observing the magnified

results [(4.16(c)), (4.16(d)), (4.16(g)) and (4.16(h))] it can be noticed that in both the

cases the sliding variable and control signal are computed from first sampling instants.

Thus the effect of fractional part of delay from sensor to controller is compensated at

sliding variable and control signal. Figures (4.17(a)) to (4.18(d)) shows the results of

position control of brushless DC motor for total networked delay ofτ = 28msec with

τsc = 14msec andτca = 14msec. Considering the sampling interval ofh = 30msec the

fractional part of delay is computed asτ ′ = 0.933, τ ′sc = 0.466 andτ ′ca = 0.46 respec-

tively. Figures (4.17(a)) and (4.17(b)) shows the simulated and experimental tracking

results of the system for the specified networked delay. It can be observed that in both

the cases, output tracks the reference trajectory without chattering. In order to examine

the actual effect of time delay compensation the results aremagnified as shown in Fig-

ures (4.17(c)) and (4.17(d)). Observing the magnified results it can be concluded that

the effect of fractional part of delay from sensor to controller is compensated as output

tracks the reference signal att = 14msec. Figures (4.17(e)), (4.17(f)), (4.18(a)) and

(4.18(b)) shows the simulated and experimental results of compensated sliding variable

and control signal for specified networked delay. It can be noticed from the results

that the time delay compensation algorithm works efficiently for large value ofτ . The

magnified results of the same are shown in Figures (4.17(g)),(4.17(h)), (4.18(c)) and

(4.18(d)) which clearly justifies that in both the cases the effect of fractional part of

delay from sensor to controller is compensated in the sliding variable as well as control

signal.

Thus from above results, it can be concluded that the non-switching controller designed

using proposed algorithm works efficiently with the networkdelay range of10msec

to 28msec in simulated as well as experimental environment. The proposed controller
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(a) Position control of DC motor using proposed al-
gorithm forτ=12.8msec
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(b) Position control of DC motor using switching
based SMC algorithm forτ=12.8msec
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(c) Position control of DC motor using conventional
SMC algorithm forτ=12.8msec
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(d) Compensated sliding variable of proposed algo-
rithm algorithm forτ=12.8msec
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(e) Compensated sliding surface of switching based
SMC algorithm forτ=12.8msec
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(f) Compensated sliding variable of conventional
SMC algorithm forτ=12.8msec
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(g) Control signal response of proposed algorithm
for τ=12.8msec
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(h) Control signal response of switching based SMC
algorithm forτ=12.8msec

Figure 4.19: Comparison of proposed algorithm, switching based sliding mode control
and conventional sliding mode control forτ=12.8msec

compensates the effect of fractional time delay without chattering forψ = 1500 satis-

fying (4.4) and shows the stable response satisfying (4.7) in the presence of matched

uncertainty.

Comparison of proposed algorithm with conventional sliding mode control

In this section, the experimental results of proposed algorithm are compared with switch-

ing sliding mode control using time delay approximation andconventional sliding mode

control. The results are compared in terms of tracking response, sliding variable and
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Figure 4.20: Control signal response of coventional SMC algorithm for τ=12.8msec

Algorithm Comparison Results
τ Ts Chattering Response

Coventional SMC 12.8msec Undefined high unstable
Switching SMC 12.8msec 1sec within QSMB stable
Proposed method 12.8msec 0.3sec negligible within QSMB stable

Table 4.1: Comparison of Proposed Algorithm, Switching based SMC and Conven-
tional SMC

control signal for total networked delay ofτ = 10msec. From the comparative re-

sults [Figures (4.19(a) to (4.20)], it can be observed that the conventional sliding mode

control becomes unstable for a small delay ofτsc = 5msec while the sliding mode

controller designed using switching algorithm generates the chattering behaviour at the

output signal compared to proposed algorithm. Thus, ThiranApproximation proved to

be more efficient technique for non-switching based discrete-time sliding mode control.

The comparison of proposed algorithm with switching sliding mode control using time

delay approximation and conventional sliding mode controlare summarized in Table-

4.1.

4.4.3 Simulation Results With Real-Time Networks

In previous section the efficacy of the proposed control law is examined in the presence

of Brushless DC motor connected through networked medium. It can be observed from

simulation results that, the control law proposed using non-switching reaching law pro-

vides faster convergence without increasing the amplitudeof control signal. The chat-

tering is also negligible compared to switching-type control law. Thus, in this section

the efficacy of the proposed non-switching control law is further tested in the presence

of real time networks and matched uncertainty. The real timenetworks are simulated
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using True Time software which provides wide range of simulated networks such as

CAN, Switched Ethernet, Profibus, Profinet, CSMA/CD, Round Robbin etc.. In this

work, the simulations are carried out under CAN and SwitchedEthernet communica-

tion medium as network delays are assumed to be deterministic in nature. Further, the

performance of the system is also studied in the presence of packet loss situation.

The following network specifications and parameters are considered for simulations:

Networked Medium : CAN and Switched Ethernet

Data Rate (bits/s)=80000

Minimum frame size (bits)=512 (CAN) and 1024 (Switched Ethernet)

Loss Probability = 0 to 0.5

sampling interval h= 0.030 second.

Cs = [24.5156 31.6288]

|s(k)| ≤ +0.2 to−0.2 with user defined constantψ = 1500.

Consider the continuous-time LTI system as,

ẋ(t) = Ax(t) +Bu(t− τ) +Dd(t), (4.23)

y(t) = Cx(t), (4.24)

where,

A =





−0.7 2

0 −1.5



, B =





−0.03

−1



,

C =
[

1 0
]

,D =





1

1



.

Discretizing the above system parameters at sampling interval of h = 30msec we get,

x(k + 1) = Fx(k) +Gu(k − τ ′) + d(k), (4.25)

y(k) = Cx(k), (4.26)

where,

F =





0.9792 0.05805

0 0.956



,G =





−0.001771

−0.02934



,
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C =
[

1 1
]

.

CAN as a Network Medium
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Figure 4.21: Scheduling policies of sensor to actuator withCAN network under ideal
condition
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Figure 4.22: Scheduling policies of sensor to actuator withCAN network under traffic
conditions
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Figure 4.23: Tracking response of system with CAN network under ideal condition
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Figure 4.24: Tracking response of system with CAN network under traffic conditions

In this section, the nature of the system with CAN as a networked medium is stud-

ied in Figures (4.21) to (4.36). The robustness of the proposed controller is checked
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Figure 4.25: Magnified tracking response with CAN network under ideal conditions
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Figure 4.26: Magnified tracking response with CAN network under traffic conditions
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Figure 4.27: Compensated sliding variables(k)
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Figure 4.28: Magnified compensated sliding variables(k)
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Figure 4.29: Control signalu(k)

by applying slowly time varying disturbance at the input side of the system as shown

in Figure (4.1). In CAN, it is assumed that the minimum frame size is 512 bits and
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Figure 4.30: Magnified control signalu(k)
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Figure 4.31: Tracking response of system when packet loss isis 10%
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Figure 4.32: Tracking response of system when packet loss is30%
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Figure 4.33: Tracking response of system when packet loss is50%
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Figure 4.34: Scheduling policy of sensor to controller whenpacket loss is10%
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Figure 4.35: Scheduling policy of sensor to controller whenpacket loss is30%
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Figure 4.36: Scheduling policy of sensor to controller whenpacket loss is50%

data transfer rate is 80000 bits/sec. So, the delay generated in the CAN network to

transfer the data packets from sensor to controller isτsc = 6.4msec and from con-

troller to actuator isτca = 6.4msec. The processing and the computational delays at

sensor, controller and actuator are considered as0.9msec, 0.5msec and0.5msec re-

spectively. Thus the total networked delay generated within the closed loop system is

τ = 14.7msec. The fractional part of total network delay is obtained asτ ′ = 0.49,

τ ′sc = 0.213 and τ ′ca = 0.213 for sampling interval ofh = 30msec. The schedul-

ing policies of sensor to controller and controller to actuator with network under ideal

condition and bandwidth sharing condition are shown in Figures (4.21) and (4.22) re-

spectively. It can be observed that blue samples are indicated as the traffic while yellow

and red samples indicate the scheduling policy for sensor tocontroller and controller to

actuator. The trajectory response of the system for the network under ideal condition

and traffic condition are shown in Figures (4.23) and (4.24).It can be noticed that under

both situations the output tracks the reference trajectoryfor the specified networked de-

lay. In order to show the precise effect of time delay compensation in CAN network at

the output results are magnified as shown in Figures (4.25) and (4.26). It can be noticed

that the effect of fractional delay from sensor to controller is compensated as the output

tracks the reference input att = 8.3msec. The similar effect of time delay compensa-

tion for the network under traffic condition can be observed in sliding variable Figures

(4.27) and (4.28) as well as control signal Figures (4.29) and (4.30). Observing the
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magnified results in Figures (4.28) and (4.30), it can be noticed that the sliding variable

and control signal are computed exactly after an interval oft = 1.4msec even in the

presence of sensor to controller delay. Apart from time delay compensation, the pro-

posed algorithm was examined under packet loss condition. Figures (4.31), (4.32) and

(4.33) shows the results of tracking response under packet loss condition while Figures

(4.34), (4.35) and (4.36) shows the instances of packet drop. It can be observed from

results that when the packet loss is50% the system goes to unstable condition. Thus it

can be concluded that the system shows the satisfactory response under30% of packet

loss for specified network delay with CAN as a communication medium.

Switched Ethernet as a Network Medium
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Figure 4.37: Scheduling policies of sensor to actuator of Switched Ethernet network
under ideal condition
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Figure 4.38: Scheduling policies of sensor to actuator of Switched Ethernet network
under traffic condition
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Figure 4.39: Tracking response of the system with Switched Ethernet as networked
medium under idle condition.
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Figure 4.40: Tracking response of the system with Switched Ethernet as networked
medium with traffic condition
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Figure 4.41: Magnified tracking response of the system with network under ideal con-
dition
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Figure 4.42: Magnified tracking response of the system with network under traffic load
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Figure 4.43: Compensated sliding variables(k)

In this segment, the nature of the system is studied in Figures (4.37) to (4.52) for

Switched Ethernet type of communication medium considering the delays are deter-

ministic in nature. In Switched Ethernet, the minimum framesize is 1024 bits and data

transfer rate is 80000 bits/sec. So, the delay generated within the network to transfer the

data packets from sensor to controller isτsc = 12.8msec and from controller to actuator
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Figure 4.44: Magnified compensated sliding variables(k)
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Figure 4.45: Control signalu(k)
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Figure 4.46: Magnified control signalu(k)

Time (sec)
0 10 20 30 40 50 60 70 80 90 100

R
ef

er
en

ce
 v

/s
 O

ut
pu

t

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4.47: Tracking response of system when packet loss is10%
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Figure 4.48: Tracking response of system when packet loss is30%

80



Time (sec)
0 10 20 30 40 50 60 70 80 90 100

R
ef

er
en

ce
 v

/s
 O

ut
pu

t

-10

-5

0

5

10

Figure 4.49: Tracking response of system when packet loss is50%
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Figure 4.50: Scheduling policy of sensor to controller whenpacket loss is10%
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Figure 4.51: Scheduling policy of sensor to controller whenpacket loss is30%

Time (sec)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
ac

ke
t l

os
s 

=
0.

5

1

1.2

1.4

1.6

1.8

2

Figure 4.52: Scheduling policy of sensor to controller whenpacket loss is50%

is τca = 12.8msec. The processing and the computational delays at sensor, controller

and actuator are considered as0.9msec, 0.5msec and0.5msec respectively. Thus the

total networked delay within the closed loop system is computed asτ = 27.5msec.

The fractional part of total network delay is obtained asτ ′ = 0.91, τ ′sc = 0.426 and

τ ′ca = 0.426 for sampling interval ofh = 30msec. The scheduling policies of sensor to

controller and controller to actuator with network under ideal condition and bandwidth

sharing condition are shown in Figures (4.37) and (4.38) respectively. The trajectory
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Algorithm Comparison Results
τCAN τEther Ts Response

Coventional SMC 14.7msec 25.7msec Undefined unstable
Proposed method 14.7msec 25.7msec 1sec stable

Table 4.2: Comparison of Proposed Algorithm with Conventional SMC in True Time

response of the system for the network under ideal conditionand traffic condition are

shown in Figures (4.39) and (4.40). It can be noticed that under both the situations the

output tracks the reference trajectory for the specified networked delay. In order to show

the exact effect of time delay compensation in Switched Ethernet network at the output,

results are magnified as shown in Figures (4.41) and (4.42). It can be noticed that the

effect of fractional delay from sensor to controller is compensated as the output tracks

the reference input att = 14.7msec. The similar effect of time delay compensation for

the network under traffic condition can be observed in sliding variable Figures (4.43)

and (4.44) as well as control signal Figures (4.45) and (4.46). Observing the magnified

results in Figures (4.44) and (4.46), it can be noticed that the sliding variable and control

signal are computed exactly after an interval oft = 1.4msec even in the presence of

sensor to controller delay. Apart from time delay compensation, the proposed algorithm

was examined under packet loss condition. Figures (4.47), (4.48) and (4.49) shows the

results of tracking response under packet loss condition while Figures (4.50), (4.51) and

(4.52) shows the instances of packet drop. It can be observedfrom results that when

the packet loss is50% the system goes to unstable condition. Thus, it can be concluded

that the system shows the satisfactory response under30% of packet loss for specified

network delay with Switched Ethernet as a communication medium.

Comparison of proposed algorithm with conventional sliding mode control under

CAN and Switched Ethernet as a network medium

Time (sec)
0 10 20 30 40 50 60 70 80 90 100

R
ef

er
en

ce
 v

/s
 O

ut
pu

t

-1.5

-1

-0.5

0

0.5

1

1.5

y
r

Figure 4.53: Time delay compensation scheme with CAN as a networked medium.
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Figure 4.54: Tracking response of conventional SMC with CANas a communication
medium.
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Figure 4.55: Time delay compensation using Switched Ethernet as a communication
medium.
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Figure 4.56: Tracking response of conventional SMC with Switched Ethernet as a net-
worked medium.

In this section, the results of proposed algorithm were compared with conventional

SMC for CAN and Switch Ethernet communication medium. Figures (4.53), (4.54),

(4.55) and (4.56) shows the comparative results of proposedalgorithm and conven-

tional SMC for discrete time sliding mode control. It can be observed from compari-

son that conventional SMC shows unstable response for the specified networked delay.

Thus, Thiran approximation proved to be efficient techniquein discrete time sliding

mode control under packet loss condition and matched uncertainty. The comparison of

proposed algorithm and conventional SMC for CAN and Switched Ethernet communi-

cation medium are summarized in Table-4.2.
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4.5 Conclusion

In this chapter, we explored Thiran’s approximation technique for fractional delay com-

pensation in discrete-time domain. Using this approach, non-switching type discrete

time sliding mode controller is designed which computes thecontrol actions in the

presence of network delay and matched uncertainty. The stability of the closed loop

NCS is assured by using Lyapunov approach such that system states remain within the

specified band. The effectiveness of the derived algorithmsis tested using Illustrative

example and brushless DC motor setup with deterministic networked delay and matched

uncertainty. The experimental results are compared with non-switching SMC, switch-

ing SMC as well as conventional algorithm. The comparative results proved that the

fractional delay approximated using Thiran Approximationis most efficient technique

as it compensates the fractional network delays in discrete-time domain. Moreover, the

simulation results carried out using illustrative exampleand experimental results carried

out in the presence of DC servo motor plant proved that the control algorithm designed

using non-switching reaching law is robust and efficient algorithm as it provides the

faster convergence with less chattering in discrete-time domain. Further, the efficiency

of non-switching controller designed using Thiran Approximation was examined under

simulated CAN and Switched Ethernet networked medium usingTrue Time. The re-

sults shows that the proposed control algorithm designed using Thiran Approximation

compensates the networked delay in the presence of network non-idealities (time delay,

packet loss and matched uncertainty).
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CHAPTER 5

MULTIRATE OUTPUT FEEDBACK

DISCRETE-TIME SLIDING MODE CONTROLLER

FOR FRACTIONAL DELAY COMPENSATION

5.1 Introduction

In NCS, if states information is available for measurement then state feedback is the

simplest way for designing the SMC controller. In reality for any network based control

system most of the states are observable but they are immeasurable. So it is essential

to design the SMC controller based on output information which is always measurable.

This chapter summarizes the designing of multirate output feedback based discrete-time

sliding mode controller in which the control input is computed based on the system

outputs and past control signals by taking full advantage ofnetwork transmission. A

Thiran Approximation technique is used to compensate the networked delays. The

sensor to controller delay is compensated at the sliding surface, while sliding mode

controller (SMC) is utilized to compute the control sequences. The stability of the

closed loop NCSs is derived using Lyapunov approach. Simulations results are given to

demonstrate the effectiveness of the proposed approach.

5.2 Problem Formulation

Figure (5.1) represents the schematic diagram of NCS with time delay compensator and

multirate output feedback approach. As shown in Figure (5.1), the state information and

control information are exchanged between plant and controller through the networks

suffering from sensor to controller delay (τsc) and controller to actuator delay (τca).

The state information are computed based on multirate output feedback approach. In

this approach, the system states are estimated through the output information and error

between the computed state and actual state of the system goes to zero once the multirate



output sample is available. While, in coventional output feedback the error between

the actual states and estimated states decreases asymtotically and approches to zero at

infinite time. In multirate output feedback technique, the control inputs and plant output

signals are sampled at different sampling intervals. It is assumed that the sensor output

measurements are faster than control input signals. The mathematical expression of

Figure 5.1: Block diagram of NCS with multirate output feedback approach

control input signal sampled atφ sampling interval is given by:

x((k + 1)φ) = Fφx(kφ) +Gφ(u(kφ) + d(kφ)), (5.1)

y(kφ) = Cx(kφ). (5.2)

Let the output samples be sampled atζ sampling interval given by,

ζ =
φ

Λ
, (5.3)

where,Λ is the positive interger≥ observability index of the system.

Similarly, the mathematical expression of the sensor output data sampled atζ sampling

interval is given as:

x((k + 1)ζ) = Fζx(kζ) +Gζ(u(kζ) + d(kζ)), (5.4)

y(kζ) = Cx(kζ). (5.5)

86



Remark − 6: The stability of closed loop system is guaranteed, if pair(Fφ, Gφ) is

controllable and pair(Fζ , C) is observable.

The output of multirate output feedback is expressed in mathematical form as:

x̂(k) = Hyyk +Huu(k − 1) +Hdd(k − 1), (5.6)

where,yk represents the output stack,u(k − 1) represents the past control input signal,

d(k−1) represents the past disturbance signal which are availablefrom measurements.

Hy = Aφ(Z
T
0 Z0)

−1ZT
0 ,Hu = Bφ −HyX0,Hd = dφ −HyCd
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.

Thus, observing Eqn. (5.6) it can be noticed that the output of multirate depends on

past output samples, past control signal and past disturbance signal. Thus, the output

of sensor computed based on multirate ouput feedback approach will be applied to the

controller through network.

Remark − 7: In this chapter nature of the system, total fractional network delaysτ ′,

sensor to controller fractional delayτ ′sc and controller to actuator fractional delayτ ′ca

would remain same as mentioned in section (3.3).

Problem Statement: The main objective, is to design multirate output feedback

based discrete-time sliding mode control law for system (3.3,3.4) in the presence of

fractional delayτ ′sc andτ ′ca satisfying (3.5) and matched uncertainty satisfying (3.7).
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The next section describes the mathematical derivation of sliding surface that com-

pensates the effect of fractional delay (τ ′) in the presence of matched uncertaintyd(k)

using multirate output feedback approach mentioned in Eqn.(5.6).

5.3 Design of Sliding Surface Using Multirate Output

Feedback

For designing DT-SMC, we propose the sliding surface using Thiran Approximation

rule and multirate output feedback approach in the form ofLemma − 2 as under.

Lemma − 2: The sliding surface for the given system (3.3, 3.4) with sensor to con-

troller fractional network delay satisfying assumption (1) and (2) specified in section

(3.3) is given as:

s(k) = Csx̂(k)− αCsx̂(k − 1), (5.7)

where,

α = τ̂sc
1+τ̂sc

, Cs represents the sliding gain.

Proof : Let the sliding surface with network fractional delay fromsensor to controller

(τ ′sc) is given by:

s(k) = Csx̂(k − τ ′sc), (5.8)

where,Cs indicates the sliding gain,̂x(k − τ̂sc) indicates the delayed state vector. The

value of sliding gainCs is computed using discrete LQR method with proper selection

of Q and R matrices.

Applying z-transform to Eqn. (5.8) we get:

s(z) = Csx̂(z)z
−τ ′sc , (5.9)

where,τ ′sc = ν = τsc/h.
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Consideringτ ′sc ≺ 1 and using Eqn. (3.9)z−τ
′

sc can be approximated as,

z−τ
′

sc = Σ1
k=0(−1)k

(

l

k

)

Π1
i=0

2τ ′sc + i

2τ ′sc + k + i
z−k. (5.10)

The above Eqn. (5.10) can be further expanded as:

z−τ
′

sc = [(−1)0
(

1

0

){

2τ ′sc
2τ ′sc

∗
2τ ′sc + 1

2τ ′sc + 1

}

z0 + (−1)1
(

1

1

)

(5.11)
{

2τ ′sc
2τ ′sc + 1

∗
2τ ′sc + 1

2τ ′sc + 2

}

z−1].

On simplifying we get,

z−τ
′

sc = 1− αz−1. (5.12)

where,α = τ ′sc
τ ′sc+1

.

Substituting Eqn. (5.12) into (5.9),

s(z) = [1− αz−1]x̂(z)Cs. (5.13)

Further solving,

s(z) = x̂(z)Cs − αz−1x̂(z)Cs. (5.14)

Appling inversez-transform we have,

s(k) = Csx̂(k)− αCsx̂(k − 1). (5.15)

This completes theproof .

Observing Eqn. (5.15) it can be noticed that the sliding surfaces(k) depends past output

samples, past control signal, past disturbance signal and parameter′α′ approximated

through thiran approximation rule. Thus, the effect of sensor to controller fractional

delayτ ′sc in the sliding surface at each sampling instantsh is compensated through pro-

posed technique.

Now, we are ready to propose multirate output feedback baseddiscrete-time sliding

mode control law using the sliding surface (5.7).
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5.4 Design of Discrete-Time Networked Sliding Mode

Control (DNSMC) Using Multirate Output Feed-

back

In this section, discrete-time sliding mode control law is derived for deterministic net-

work fractional delays (τ ′sc andτ ′ca) along with its stability using sliding surface (5.7)

represented in form ofTheorem− 3.

Theorem − 3: The discrete-time sliding surface (5.7) is reached in a finite time in

the presence of networked delays satisfying (3.5) and matched uncertainty (3.7) pro-

vided the control law is designed as:

u(k) = −(CsG)
−1[Hdyyk +Hudu(k − 1) +Hddd(k − 1)− Js(k)− ds(k) (5.16)

+d1]− d(k).

where,

H = (CsF ), I = αCs, J = [1 − q(sc(k))], (H − I)Hy = Hdy (H − I)Hu = Hud,

(H − I)Hd = Hdd.

Proof : The reaching law proposed in [Bartoszewicz and Lesniewski (2014)], is used

to derive the control law since it provides faster convergence. The reaching law in the

presence of sensor to controller fractional delay (τ ′sc) is given by:

s[(k + 1)] = {1− q[s(k)]}s(k)− d(k) + d1, (5.17)

where,

{q[s(k)]} = ψ

ψ+|s(k)|
, d(k) represents the disturbance,

d1 = du+dl
2

, mean value ofd(k), d2 = du−dl
2

, deviated value ofd(k) andψ is the

designer’s constant satisfying,

ψ ≥ d2. (5.18)
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The reaching law in Eqn. (5.17) contains the disturbance term which is applied through

the network. Thus, the compensated disturbanceds(k) is given as:

ds(k) = d(k)− αd(k − 1). (5.19)

Using Eqn. (5.7), Eqn. (5.17) can be rewritten as

x̂(k + 1)Cs − αCsx̂(k) = [1− q(s(k))]s(k)− ds(k) + d1. (5.20)

Substituting the value of̂x(k + 1) in Eqn. (5.20),

Cs[F x̂(k) +G(u(k) + d(k))]− αCsx̂(k) = [1− q(s(k))]s(k)− ds(k) + d1. (5.21)

Further simplification gives,

CsF x̂(k) + CsG(u(k) + d(k))− αCsx̂(k) = [1− q(s(k))]s(k)− ds(k) + d1. (5.22)

The above Eqn. (5.22) further can be expressed in the terms ofcontrol law as,

u(k) = −(CsG)
−1[Hdyyk +Hudu(k − 1) +Hddd(k − 1)− Js(k)− ds(k) (5.23)

+d1]− d(k).

This completes theproof .

Observing the Eqn. (5.23) it can be noticed that the control law is computed based

on the information available in the output stackyk and not the state information. Thus,

using sliding surface (5.7) and control law (5.16) the stability of the closed loop NCS

is derived such that the system states will remain within theband in the presence of

network fractional delay (τ ′) and matched uncertaintyd(k).

5.4.1 Stability

The system states in (3.3, 3.4) will slides on the sliding surface (5.7) and maintain on

it with the controller designed in (5.23) under network fractional delay (τ ′) satisfying
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(3.5) and matched uncertainty (3.7) such that for anyψ ≥ d2 andγ ≺ 0 the following

condition should hold true:

0 � κ ≺ sT (k)s(k). (5.24)

Proof : Consider the sliding surface (5.7) as,

s(k + 1) = Csx̂(k + 1)− αCsx̂(k). (5.25)

Let the Lyapunov function be given by,

Vs(k) = sT (k)s(k). (5.26)

Taking forward difference of the above Eqn. (5.26),

∆Vs(k) = sT (k + 1)s(k + 1)− sT (k)s(k). (5.27)

Substituting the value ofs(k + 1) from Eq. (5.7) we get,

∆Vs(k) = [Csx̂(k + 1)− αCsx̂(k)]
T [Csx̂(k + 1)− αCsx̂(k)] (5.28)

−sT (k)s(k).

Substituting the value of̂x(k + 1) we get,

∆Vs(k) = [Cs[F x̂(k) +G(u(k) + d(k))]− αCsx̂(k)]
T [Cs[F x̂(k) +G(u(k) (5.29)

+d(k))]− αCsx̂(k)]− sT (k)s(k).

Substituting the value ofu(k) and further solving it we have,

∆Vs(k) = [[1− q(s(k))]s(k)− dc(k) + d1]
T ∗ [[1− q(s(k))]s(k)− dc(k) (5.30)

+d1]− sT (k)s(k).

It can be seen that the term[[1 − q(s(k))]s(k) − dc(k) + d1] contains the disturbance

term in∆Vs(k). Letκ = [[1−q(s(k))]s(k)−dc(k)+d1]
T ∗[[1−q(s(k))]s(k)−dc(k)+d1]
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Then we have,

∆Vs(k) = κ− sT (k)s(k). (5.31)

If κ is closed tuned to zero by appropriately selecting the parameterψ, thensT (k)s(k)

will be larger thanκ. Therefore, for any constant parameterγ, we have∆Vs(k) ≺

−γsT (k)s(k) which guarantees the convergence of∆Vs(k).

This completes theproof .

5.5 Results and Discussion

In this section the efficacy of the designed control algorithm based on MROF approach

is validated in the presence of fractional network delay andmatched uncertainty applied

at the input channel of the system. The simulation results are carried out using illus-

trative example [Wu and Chen (2007)] in MATLAB enviornment considering different

fractional delays.

5.5.1 Simulation Results

Consider the continuous-time LTI system as,

ẋ(t) = Ax(t) +Bu(t− τ) +Dd(t), (5.32)

y(t) = Cx(t), (5.33)

where,

A =





−0.7 2

0 −1.5



, B =





−0.03

−1



,

C =
[

1 0
]

,D =





1

1





Discretizing the above system with sampling interval ofh = 30msec we get,

x(k + 1) = Fx(k) +Gu(k − τ ′) + d(k), (5.34)

y(k) = Cx(k), (5.35)
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where,

F =





0.9792 0.05805

0 0.956



,G =





−0.001771

−0.02934



,

C =
[

1 0
]

.
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Figure 5.2: Actual statex1 and estimated statêx1 with initial conditionx1=0.5 forτ =
12.8msec
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Figure 5.3: Actual statex2 and estimated statêx2 with initial conditionx2=0.5 forτ =
12.8msec
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Figure 5.4: Magnified result of actual statex1 and estimated statêx1 with initial condi-
tion x1=0.5 forτ = 12.8msec

Figures (5.2) to (5.18) shows the nature of system using multirate output feedback

approach under networked environment. The robustness of the system is validated by

applying slow time varying disturbance applied at the inputside of channel. The net-

worked delay is considered as the time required for the data packets to travel from

sensor to controller and controller to actuator. The sliding gain parameter is calcu-

lated using discrete LQR method which comes out to beCs = [−1.77 −2.766] for
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Figure 5.5: Magnified result of actual statex2 and estimated statêx2 with initial condi-
tion x2=0.5 forτ = 12.8msec
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Figure 5.6: Sliding surfaces(k) for τ = 12.8msec
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Figure 5.7: Magnified sliding surfaces(k) for τ = 12.8msec
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Figure 5.8: Control signalu(k) for τ = 12.8msec
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Figure 5.9: Magnified control signalu(k) for τ = 12.8msec

Q = diag(1000, 1000) andR = 1. The sliding band|s(k)| remains same as that of

previous cases. The initial condition of the system in both the cases are considered
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Figure 5.10: Actual statex1 and estimated statêx1 with initial condition x1=0.5 for
τ = 25.6msec
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Figure 5.11: Actual statex2 and estimated statêx2 with initial condition x2=0.5 for
τ = 25.6msec
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Figure 5.12: Magnified result of actual statex1 and estimated statêx1 with initial con-
dition x1=0.5 forτ = 25.6msec
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Figure 5.13: Magnified result of actual statex2 and estimated statêx2 with initial con-
dition x2=0.5 forτ = 25.6msec

as [x1 x2] = [0.5 0.5]T . The sensor output signal is sampled atζ = 2msec and

the control input signal is sampled atφ = 6msec consideringΛ = 3. The efficacy

of the proposed algorithm is checked under networked delay of τ = 12.8msec and

τ = 25.6msec respectively.

Figures (5.2) to (5.9) show the regulatory response of statevariables, sliding variable

and control signal forτ = 12.8msec with τsc = 6.4msec andτca = 6.4msec. Since
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Figure 5.14: Sliding surfaces(k) for τ = 25.6msec
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Figure 5.15: Magnified sliding surfaces(k) for τ = 25.6msec
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Figure 5.16: Control Signalu(k) for τ = 25.6msec
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Figure 5.17: Magnified control signalu(k) for τ = 25.6msec
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Figure 5.18: Output stackyk

the system is discretized ath = 30msec, the fractional part of delay is computed to be

τ ′ = 0.426, τ ′sc = 0.213 andτ ′ca = 0.213 respectively. Figures (5.2) and (5.3) show

the regulatory response of the system states for the specified networked delay. It can be
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observed that the actual states (x1, x2) and estimated states (x̂1, x̂2) both converges to

zero from their given initial condition. In order to prove the effect of multirate output

feedback and time delay compensation the results are magnified as shown in Figures

(5.4) and (5.5) respectively. It can be noticed that in both cases the estimated state vari-

ables follows the actual state variable atζ = 2msec which means the error becomes

zero once the multirate output sample is available. Apart from these, both the states are

computed from first sampling instants. Thus, the effect of fractional time delay from

sensor to controller and controller to actuator is compensated. The similar effect of

compensation is observed in sliding variable and control signal results shown in Fig-

ures (5.6) to (5.9). Observing the magnified results shown inFigures (5.7) and (5.9) it

can be noticed that the sliding variable and control signal both are computed from first

sampling instants even in the presence of sensor to controller fractional delay.

Figures (5.10) to (5.17) show the response of the system in terms of state variables,

sliding variable and control signal forτ = 25.6msec with τsc = 12.8msec andτca =

12.8msec. The fractional part of delay is computed to beτ ′ = 0.8533, τ ′sc = 0.426 and

τ ′ca = 0.426 for h = 30msec. Figures (5.10) and (5.11) show the regulatory response

of the system state variables for specified networked delay.It can be noticed that ac-

tual states (x1, x2) and estimated states (x̂1, x̂2) both converges to zero from their given

initial condition. The magnified regulatory response of thesame is shown in Figures

(5.12) and (5.13). It can be observed that both states variables start converging to zero

at first sampling instant and the estimated states follows the actual state variables at

ζ = 2msec. Thus, the effect of network delay from sensor to controllerand controller

to actuator is nullified at the output. The same effect is observed in sliding variable

Figure (5.14) as well as control signal Figure (5.16). Observing the magnified results

shown in Figures (5.15) and (5.17), it can be concluded that the effect of fractional delay

from sensor to controller is compensated through Thiran Approximation. Figure (5.18)

shows the result of output stack for both the cases.

Thus, from above results it can be noticed that the proposed control algorithm works

efficiently for the networked delay of12.8msec to 25.6msec. The sliding surface and

control algorithm derived using multirate output feedbackapproach with Thiran Ap-

proximation takes care of sensor to controller fractional delay and controller to actuator

fractional delay in the presence of matched uncertainty.
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5.6 Conclusion

In this chapter, a new idea of compensating the fractional delay in forward as well

as feedback channel is introduced using the concept of multirate output feedback ap-

proach. The sensor to controller fractional delay is compensated using Thiran Approxi-

mation at the sliding surface while controller to actuator fractional delay is compensated

at actuator end. Using this novel approach a multirate output feedback discrete-time net-

worked sliding mode control law is derived that compute the control sequences in the

presence of network fractional delay and matched uncertainty. The main advantage of

using multirate output feedback approach is that the systemstates are computed based

on the output information available and the error between computed as well as estimated

state variables becomes zero exactly after one sampling instant. Stability of the closed

loop NCS is ensured using Lyapunov approach such that systemstates would remain

within the band under network non-idealities. The simulation results carried out using

proposed technique shows the enhanced response and compensates the effect of frac-

tional delay accurately in discrete-time domain. The proposed algorithm is validated

for deterministic type of network fractional delay.
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CHAPTER 6

DISCRETE-TIME SLIDING MODE CONTROLLER

FOR RANDOM FRACTIONAL DELAYS AND

PACKET LOSS

6.1 Introduction

In Networked Control System the behaviour of network delaysgenerally depends on the

characteristics of communication medium as well as occupancy of channel by different

elements. When large number of sensors, controllers and actuators share their infor-

mation through the common comunication medium then the network delays and packet

losses are random in nature. In this chapter, a novel approach is presented for designing

discrete-time sliding mode controller by treating random fractional delay and packet

loss seperately. The fractional delay that occurs within sampling period while trans-

mitted from sensor to controller and controller to actuatorchannel are modelled using

Poisson’s distribution function and are approximated using Thiran’s delay approxima-

tion technique for designing the discrete-time sliding mode controller. The packet loss

that occur in communication channel between sensor to controller and controller to ac-

tuator are treated with Bernoulli’s distribution functionand compensated at controller

end as well as actuator end. Further, Lyapunov approach is used to determine the sta-

bility of closed loop NCSs with proposed discrete-time SMC controller. The feasibility

and efficiency of the proposed control methodology is outlined through simulation and

experimental results which shows a significant response even in the presence of random

fractional delay, packets loss and matched uncertainities.

6.2 Problem Formulation

The block diagram of NCS with communication networked medium and packet loss

situation is shown in Figure (6.1). The state information aswell as control signal are



transmitted to the controller and actuator through the network medium. During trans-

mission, the state information and control signal experience time delay from sensor

to controller channel and controller to actuator channel respectively. These delays are

broadly defined as the time required for the data packets to travel within the network.

While transmission, if data packets takes longer duration of time to travel within the

network than sampling interval it is called as packet loss. This situation mainly arises

due to network congestion, node competition or heavy trafficin the network.

Figure 6.1: Block diagram of NCS with fractional delay compensation and packet loss

Consider the linear time invariant SISO system with random network delay in continuous-

time domain as:

ẋ(t) = Ax(t) +Bu(t− τr) +Dd(t), (6.1)

y(t) = Cx(t), (6.2)

wherex ∈ Rn is system state vector,u ∈ Rm is control input,y ∈ Rp is system output,

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rn×m are the matrices of appropriate dimen-

sions,d(t) is the matched bounded disturbance with|d(t)| ≤ dmax andτr is the total

random network delay in continuous-time domain.
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The discrete form of system (6.1) and (6.2) is:

x(k + 1) = Fx(k) +Gu(k − τ̂) + d(k), (6.3)

y(k) = Cx(k), (6.4)

whereF = eAh, G =
∫ h

0
eAtBdt, d(k) =

∫ h

0
eAtDd((k + 1)h − t)dt ∈ O(h). Since

|d(t)| ≤ dmax, it can be inferred thatd(k) is also bounded andO(h) [Mehta and Bandy-

opadhyay (2016)]. For simplicity, it is assumed thatd(k) is slowly varying and remain

constant over the intervalkh ≤ t ≤ (k + 1)h [Mehta and Bandyopadhyay (2016)].

The total random fractional delay (τ̂ ) occurring within the network denoted as,

τ̂ =
τr
h
,

whereh is the sampling interval.

Remark−8: In this work, the non-integer form of random fractional delay τ̂ is consid-

ered instead of integer form in discrete-time domain in order to compensate the precise

effect of random network delay occuring at each sampling instants.

Assumption− 3: Network induced fractional delays are random in nature andthere-

fore satisfying

τ̂l ≤ τ̂ ≤ τ̂u, (6.5)

whereτ̂l andτ̂u indicates the lower and upper bound of total random fractional network

delays.

The total random network induced fractional delay is the combination of sensor to con-

troller fractional delay (̂τsc) and controller to actuator fractional delay (τ̂ca) having ran-

dom behaviour which is given as,

τ̂ = τ̂sc + τ̂ca, (6.6)

where,τ̂sc = τrsc
h

andτ̂ca = τrca
h

.

Assumption − 4: In this work, it is assumed that only single packet loss occurs.

The assumption is justifying as the packet time delay more than sampling period is con-

sidered as dropped or lost packet.
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Problem Statement: To design robust non-switching discrete-time sliding mode

controller for the system (6.3,6.4) in the presence of random fractional delayŝτsc and

τ̂ca, matched uncertainty and packet loss situation satisfyingcondition (6.5), (3.7) and

assumption (4).

The sliding mode controller involves the sliding surface design that steers the system

states towards the surface and control law that computes thecontrol sequences.

The next section proposes the design of sliding surface thatcompensates the ef-

fect of random fractional delay occuring between sensor to controller in NCSs. It also

discusses about the modelling of random fractional delay and packet loss.

6.3 Sliding Surface with Random Fractional Delay and

Packet Loss

The effect of random fractional delay in discrete-time domain due to presence of net-

worked medium is compensated in sliding surface presented in Lemma − 3.

Lemma − 3: The sliding surfaces(k) for a random fractional delay (τ̂sc), satisfying

conditions (6.5) and (3.7) with packet loss for the system (6.3,6.4) is given as:

s(k) = (1− ᾱ)x′c(k) + ᾱx′c(k − 1), (6.7)

where,

x′c(k) = Csx(k)− ςCsx(k − 1), x′c(k− 1) = Csx(k − 1)− ςCsx(k − 2),ς = τ̂sc
τ̂sc+1

, Cs

is the sliding gain and̄α is the probability of the data packet lost.

Proof : In discrete-time domain there are various algorithms for modelling the ran-

dom variables such as Bernoulli’s distribution, Geometricdistribution, Poisson’s distri-

bution, Probability distribution, Binomial distributionand Pascal distribution. Among

these algorithms Bernoulli’s distribution and Probability distribution are two widely
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used algorithms for mathematical modelling of integer typeof network delays in discrete-

time domain. Since, the sensor to controller delay (τ̂sc) is random and fractional in

nature, Poisson’s distribution is the most suitable approach in discrete-time domain.

Poisson’s distribution is used to model the random variables of smaller values on the

basis of number of events occurred over the specified interval of time. The occurrence

of the events is based on the number of trials required to generate the event. So, using

this approach the random fractional delay is modelled by assuming that at each sam-

pling instants an event takes place such that the networked delay might be lesser or

higher than sampling interval.

Thus, the communicated state variable over the network having random fractional delay

from sensor to controller is given as:

xc(k) = x(k − τ̂sc), (6.8)

where,τ̂sc is the fractional form of sensor to controller delay in discrete-time domain

that takes the values in a finite set, that is,{τ̂sc}ǫ{d1, d2, ......, dq}. Thus, the sensor

to controller fractional delay{τ̂sc} can be modelled using Poisson’s distribution with

probabilities given by,

Pr{τ̂sc = dv} = E{dv} = βv, v = 1, 2, ...., q. (6.9)

where,βv is the positive scalar andΣqv=0βv = 1,E{dv} is the expectation of the stochas-

tic variabledv. The mathematical representation ofβv with poisson’s distribution is

given by:

βv =
λwe−λ

w!
;w = 0, 1, 2, 3, ..... (6.10)

where,w indicates the number of trials,λ denotes average number of events per interval

ande denotes the Euler’s number.

Applying z-Transform to Eqn. (6.8) we get,

xc(z) = x(z)z−τ̂sc , (6.11)

where,τ̂sc = ν = τrsc
h

.
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Using Eqn. (3.9),z−τ̂sc can be approximated as,

z−τ̂sc = Σ1
k=0(−1)k

(

l

k

)

Π1
i=0

2τ̂sc + i

2τ̂sc + k + i
z−k, (6.12)

The above Eqn. (6.12) can be further expanded as:

z−τ̂sc = [(−1)0
(

1

0

){

2τ̂sc
2τ̂sc

∗
2τ̂sc + 1

2τ̂sc + 1

}

z0 + (−1)1
(

1

1

)

(6.13)
{

2τ̂sc
2τ̂sc + 1

∗
2τ̂sc + 1

2τ̂sc + 2

}

z−1],

On simplifying we get,

z−τ̂sc = 1− ςz−1, (6.14)

where,ς = τ̂sc
τ̂sc+1

andτ̂sc is the random fractional delay defined in Eqns. (6.9) and (6.10)

respectively.

Substituting Eqn. (6.14) into (6.11) we have,

xc(z) = x(z)[1 − ςz−1], (6.15)

Further expanding it we obtain,

xc(z) = x(z)− ςz−1x(z), (6.16)

Applying inversez-Transform, we get,

xc(k) = x(k)− ςx(k − 1). (6.17)

The sensor output signalx(k) generated at each sampling instanth is sent to the con-

troller via communication channel. From Eqn. (6.17), it canbe noticed that at each

sampling instant the effect of fractional delay (τ̂sc) is compensated in the communicated

state variablexc(k) using the immediate past state, the current state and parameter ς.

The same communicated state variablexc(k) is further used to compute the sliding sur-

face.

The mathematical representation of compensated random packet loss within the net-
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work is given as,

xp(k) = (1− α(k))xc(k) + α(k)xc(k − 1), (6.18)

wherexc(k) is the compensated communicated state variable available at the controller

andα(k)ǫR is the stochastic variable which is represented as Bernoulli’s distributed

sequence with,

Pr{α(k) = 1} = E{α(k)} = ᾱ, (6.19)

Pr{α(k) = 0} = 1− E{α(k)} = 1− ᾱ, (6.20)

where,0 � ᾱ ≺ 1 implies the probability that the data packet is lost andE{α(k)} is

the expectation of the stochastic variableα(k).

Thus,xp(k) can be written as:

xp(k) = (1− ᾱ)xc(k) + ᾱxc(k − 1), (6.21)

where,ᾱ is the probability of the data packet lost defined in Eqns. (6.19) and (6.20).

Let the sliding variable that compensate the effect of random fractional delay and packet

loss is given by:

s(k) = Csxp(k), (6.22)

where,Cs is the sliding gain which is calculated using discrete LQR method through

proper selection of Q and R matrices.

Substituting the value ofxp(k) in Eqn. (6.22) we have:

s(k) = (1− ᾱ)x′c(k) + ᾱx′c(k − 1), (6.23)

where,

x′c(k) = Csx(k)− ςCsx(k − 1), x′c(k − 1) = Csx(k − 1)− ςCsx(k − 2)

This completes theproof .

It is assumed that the state packet delay is smaller than sampling interval if the net-

work is free from congestion. So the data packetxp(k) with delay is used without loss
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to compute the sliding surface. However, if the network is overloaded due to traffic or

congestion, the state packet delay will be larger than sampling interval. At that instance,

xp(k − 1) will be used to compute the sliding surface. So from Eqn. (6.23), it can be

easily noticed that at each sampling instant the effect of random fractional delay and

packet loss in the actual system states are compensated at the sliding surface when it

takes the valuex′c(k − 1) with probabilityᾱ andx′c(k) with probability(1− ᾱ).

Once the sliding surface is designed, the next step is to design the discrete-time sliding

mode control law which is presented in next section.

6.4 Discrete-Time Networked Sliding Mode Control for

NCSs With Random Fractional Delays and Packet

Loss

This section presents the derivation of non-switching discrete-time sliding mode control

law for NCS using the sliding surface (6.23) asTheorem− 4 below.

Theorem − 4: The non-switching discrete-time sliding mode controllerfor system

(6.3, 6.4) in the presence of random fractional network delays satisfying (6.5) with

packet loss and matched uncertaintyd(k) is given as,

u(k) = −(CsG)
−1(1− ᾱ)−1[Hx(k)− Ix(k) +Kx(k)− Lx(k − 1)− (6.24)

J(s(k)) + ds(k)− d1]− d(k).

where,

H = (1− ᾱ)(CsF ), I = ς(1− ᾱ)Cs,K = ᾱCs, L = ςᾱCs andJ = {1− q[s(k)]}

Proof : Let us define reaching law given by Bartoszewicz and Lesniewski (2014) in

the presence of random fractional delay as:

s[(k + 1)h] = {1− q[s(k)]} − ds(k) + d1, (6.25)
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whereq[s(k)] = ψ

ψ+|s(k)|
with ψ as user defined constant satisfyingψ ≥ d2, d1 andd2

are mean and deviation ofd(k).

Remark−6: The disturbaced(k) appearing in the reaching law is applied through the

network. So, the compensated disturbanceds(k) using Thiran’s approximation is given

as:

ds(k) = d(k)− ςd(k − 1), (6.26)

The reaching law in Eqn. (6.25) indicates that the system states always move towards

the specified sliding band given as:

|s(k)| ≤
ψd2
ψ − d2

, (6.27)

Substituting the value ofs(k + 1) in Eqn. (6.25) we get,

(1− ᾱ)x′c(k + 1) + ᾱx′c(k) = {1− q[s(k)]} − ds(k) + d1,

Substituting the value ofx′c(k + 1),

(1− ᾱ)[Csx(k + 1)− ςCsx(k)] + ᾱ[Csx(k)− ςCsx(k − 1)] = (6.28)

{1− q[s(k)]} − ds(k) + d1,

Further, substitutingx(k + 1) gives

(1− ᾱ)[Cs[Fx(k) +G(u(k) + d(k))]− ςCsx(k)] + ᾱ[Csx(k)− (6.29)

ςCsx(k − 1)] = {1− q[s(k)]} − ds(k) + d1,

Simplifying,

(1− ᾱ)CsFx(k) + (1− ᾱ)CsG(u(k) + d(k))− ς(1− ᾱ)Csx(k) + (6.30)

ᾱCsx(k)− ςᾱCsx(k − 1) = {1− q[s(k)]} − ds(k) + d1,

Further solving above Eqn. (6.30), the control law can be expressed as:

u(k) = −(CsG)
−1(1− ᾱ)−1[Hx(k)− Ix(k) +Kx(k)− Lx(k − 1)− (6.31)

J(s(k)) + ds(k)− d1]− d(k).
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where,

H = (1− ᾱ)(CsF ), I = ς(1− ᾱ)Cs,K = ᾱCs, L = ςᾱCs andJ = {1− q[s(k)]}.

This completes theproof .

Similarly, the effect of random fractional delay at controller to actuator and packet

loss can be compensated at the actuator end. The compensatedcontrol signal applied to

the plant is given by:

ua(k) = (1− β̄)(uc(k)) + β̄(uc(k − 1)), (6.32)

where,

uc(k) = u(k)− γ′u(k− 1) anduc(k− 1) = u(k− 1)− γ′u(k− 2) andγ′ = τ̂ca
1+τ̂ca

and

τ̂ca is the random fractional delay from controller to actuator.

From Eqn. (6.32) it can be easily inferred that at each sampling instant the effect of

random fractional delay from controller to actuator is compensated inuc(k) using past

control signal, present control signal and parameter ’γ′’ while packet loss is compen-

sated which takes the valueuc(k − 1) with probability β̄ anduc(k) with probability

(1− β̄).

The next section discusses about the stability condition for the closed loop system

such that the system states remain within specified band (6.27) using control law (6.31).

6.4.1 Stability Analysis

The trajectories of the closed loop system given in Eqn. (6.3,6.4) drive towards the

sliding surface as mentioned in Eqn. (6.23) for a given controller in Eqn. (6.31) in

the presence of total networked delayτ̂ satisfying Eqn. (6.5), packet loss condition
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satisfying0 � ᾱ ≺ 1 and matched uncertainty satisfying (3.7) such that the following

condition in Eqn. (6.33) must exists:

ρsT (k)s(k) ≻ 0. (6.33)

Proof : Consider the compensated sliding surface (6.23),

s(k) = (1− ᾱ)x′c(k) + ᾱx′c(k − 1). (6.34)

Let us defined Lyapunov function as,

Vs(k) = sT (k)s(k). (6.35)

Taking the forward difference we have,

∆Vs(k) = sT (k + 1)s(k + 1)− sT (k)s(k). (6.36)

Using Eqn. (6.34) we get,

∆Vs(k) = [(1−ᾱ)x′c(k+1)+ᾱx′c(k)]
T [(1−ᾱ)x′c(k+1)+ᾱx′c(k)]−s

T (k)s(k). (6.37)

Substituting the value ofx′c(k + 1) we get,

∆Vs(k) = [(1− ᾱ)[Csx(k + 1)− α′Csx(k)] + ᾱ[Csx(k)− α′Csx(k − 1)]]T (6.38)

[(1− ᾱ)[Csx(k + 1)− α′Csx(k)] + ᾱ[Csx(k)− α′Csx(k − 1)]]− sT (k)s(k).

Further substituting the value ofx(k + 1),

∆Vs(k) = [(1− ᾱ)[Cs[Fx(k) +G(u(k) + d(k))]− α′Csx(k)] + ᾱ[Csx(k)− (6.39)

α′Csx(k − 1)]]T [(1− ᾱ)[Cs[Fx(k) +G(u(k) + d(k))]− α′Csx(k)] +

ᾱ[Csx(k)− α′Csx(k − 1)]]− sT (k)s(k).

Substitutingu(k) and rewritting above Eqn. (6.39),

∆Vs(k) = Γ− sT (k)s(k). (6.40)
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where,Γ = [(1− ᾱ)−1[1− q(s(k))]s(k)− ds(k) + d1]
T [(1− ᾱ)−1[1− q(s(k))]s(k)−

ds(k) + d1]. The termΓ can be tuned closed to zero by appropriately selecting the

parameterψ andᾱ. If Γ is close to zero thensT (k)s(k) will be larger thanΓ. Thus for

any small parameterρ we have,

Γ− sT (k)s(k) ≺ ρsT (k)s(k). (6.41)

Tuning of parameterΓ, leads to,∆Vs(k) ≺ ρsT (k)s(k) which guarantees the conver-

gence of∆Vs(k) and implies that any trajectory of the system (6.3,6.4) willbe driven

onto the sliding surface and maintain on it.

This completes theproof .

6.5 Results and Discussions

In this section the effect of proposed control algorithm is validated through simulation

and experimental results carried out in the presence of random fractional delay, packet

loss and matched uncertainty. An illustrative example given by Wu and Chen (2007) is

considered for simulation while Quanser DC motor is used forexperimental purpose.

6.5.1 Simulation Results

Consider the continuous-time LTI system as mentioned in (4.4.1),

ẋ(t) = Ax(t) +Bu(t− τr) +Dd(t), (6.42)

y(t) = Cx(t), (6.43)

where,

A =





−0.7 2

0 −1.5



, B =





−0.03

−1



,

C =
[

1 0
]

,D =





1

1



.
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Dsicretizing the above system with sampling interval ofh = 30msec we get,

x(k + 1) = Fx(k) +Gu(k − τ̂) + d(k), (6.44)

y(k) = Cx(k), (6.45)

where,

F =





0.9792 0.05805

0 0.956



,G =





−0.001771

−0.02934



,

C =
[

1 0
]

.
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Figure 6.3: Magnified plot for sensor to controller fractional delay
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Figure 6.4: Magnified plot for controller to actuator fractional delay
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Figure 6.5: State variablex1(k)
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Figure 6.6: Magnified state variablex1(k)
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Figure 6.7: State variablex2(k)
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Figure 6.8: Magnified state variablex2(k)

Figures (6.2) to (6.22) show the nature of the system under networked environ-

ment with random fractional delays, packet loss situation and matched uncertainty. In

order to prove the robustness of the proposed algorithm in the presence of variable net-

worked delay and packet loss the slow time varying disturbance is applied to the system

as shown in Figure (4.1). The random nature of total networked induced fractional
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Figure 6.9: Compensated sliding variables(k)
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Figure 6.10: Magnified compensated sliding variables(k)
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Figure 6.11: Control Signalu(k)
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Figure 6.12: Magnified control signalu(k)

delay is modelled using Poisson’s distribution. It is assumed that at every sampling

instant one event is generated considering total networkedinduced delay lesser than

sampling interval with zero trial. So, according to Poisson’s distribution under these

assumptions the probability of networked delays lesser than sampling interval will be

p = 0.63 while the probability of the networked delays greater than sampling interval
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Figure 6.13: Compensated control signalua(k)
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Figure 6.14: Magnified compensated control signalua(k)
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Figure 6.15: Compensated control signalua(k) with 10% packet loss
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Figure 6.16: Magnified compensated control signalua(k) with 10% packet loss

is 1 − p = 0.37. Thus, the total network induced fractional delay generated within

the network is0.003sec ≤ τ ′ ≤ 0.055sec respectively. Figure (6.2) depict the random

nature of total networked induced fractional delays modelled using Poisson’s distribu-

tion. Figures (6.3) and (6.4) show the magnified results of sensor to controller fractional

delay and controller to actuator fractional delay. As discussed in previous chapter, the
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Figure 6.17: Compensated control signalua(k) with 30% packet loss
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Figure 6.18: Magnified compensated control signalua(k) with 30% packet loss
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Figure 6.19: Compensated control signalua(k) with 50% packet loss
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Figure 6.20: Magnified compensated control signalua(k) with 50% packet loss

processing delays and computational delays ocuuring at sensor, actuator and controller

are neglected due to its negligible effect.

The sliding gainCs is calculated using discrete LQR method withQ = diag(1500, 1000)

andR = 1. The computed values of sliding gain comes out to beCs = [−1.577 −2.456].

The Quasi-sliding mode band comes out to be|s(k)| � +0.1 to −0.1 with proper se-
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Figure 6.21: Compensated control signalua(k) with fractional delay greater than sam-
pling interval
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Figure 6.22: Magnified compensated control signalua(k) with fractional delay greater
than sampling interval

lection of user defined constantψ = 10.

The simulation results are discussed in three parts: (i) Figures (6.5) to (6.14) discuss the

effect of proposed control algorithm for specified networked delay range under single

packet transmission (ii) Figures (6.15) to (6.20) describes the effect of fractional de-

lays on compensated control signal for different packet loss situations and (iii) Figures

(6.21) and (6.22) show the results of compensated control signal computed at actuator

side when fractional delays are greater than the sampling interval.

Figures (6.5) and (6.7) show the results of system state variables with initial condition

x(k) = [5 −5]. It can be noticed that both the state variables slide towards the origin

from given initial condition in the presence of random fractional delays. In order to

show the accurate effect of random fractional delay compensation at the output, results

are magnified as shown in Figures (6.6) and (6.8) respectively. It can be observed that

in both the cases the state variables are computed from initial sampling. Thus, the effect

of random fractional delay from sensor to controller and controller to actuator is com-

pensated using the proposed algorithm. The same effect of compensation is observed

in compensated sliding variable (Figure (6.9)), control signal (Figure (6.11)) and com-

pensated control signal (Figure (6.13)) respectively. On observation of the magnified

results in Figures (6.10), (6.12) and (6.14) it can be noticed that all the three parameters

are computed from first sampling instant even in the presenceof sensor to controller
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delay and controller to actuator delay. The amount of delaysgenerated at both sides

of network at that sampling instant are indicated in Figures(6.3) and (6.4) respectively.

Thus the effects of random fractional delay from sensor to controller are compensated

in the sliding surface and remains within the specified band (6.27) while controller to

actuator random fractional delay is compensated at the actuator end. The efficacy of the

proposed algorithm was further tested under packet loss situation for different probabil-

ities. Figures (6.15), (6.17) and (6.19) show the results ofcompensated control signal

for different values of̄α = 0.10, 0.30 and0.50 respectively. It can be noticed that when

the packet loss probability within the network is50% the system shows unacceptable

response with high frequency oscillations. Thus it can be noticed that when the packet

loss is generated within the network the robust terms will generate more action to sta-

bilize the system which in turn makes the compensated control signal oscillatory in

nature. Figures (6.16), (6.18) and (6.20) show the magnifiedresults of the compen-

sated control signal for a given set of packet loss probabilities. It can be observed that

when the packet loss probability increases to50% within the network the proposed al-

gorithm cannot compensate the effect of fractional delay ascompared to the cases of

10% and 30% packet losses. Figures (6.21) and (6.22) show the nature of compen-

sated control signal when the probabilities of the random fractional delays are greater

than the sampling interval. It can be observed that when the probabilities of network

fractional delays are reversed than previous case that isp = 0.37 and1 − p = 0.63

the proposed technique cannot compensate the effect of random fractional delays and

the system response becomes unstable with high frequency oscillations generated at the

output. Thus, from above results it can be concluded that theproposed technique works

efficiently with random networked delay of0.003sec ≤ τ̂ ≤ 0.055sec in simulated en-

vironment. The proposed controller compensates the effectof random networked delay

for ψ = 10 andᾱ = 0.3 satisfying Eqn. (6.5) and shows the stable response satisfying

condition mention in Eqn. (6.33) in the presence of random fractional delays, packet

loss and matched uncertainty.
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6.5.2 Experimental Results

The state space form of DC Motor plant mentioned in (3.6.1) using Eqn. (3.34) is given

as,

ẋ(t) = Ax(t) +Bu(t− τr) +Dd(t), (6.46)

y(t) = Cx(t), (6.47)

where,

A =





−201 0

1 0



, B =





1

0



,

C =
[

0 1
]

, , D =





1

1



.

Dsicretizing the above system with sampling interval ofh = 30msec we get,

x(k + 1) = Fx(k) +Gu(k − τ̂) + d(k), (6.48)

y(k) = Cx(k), (6.49)

where,

F =





0.001836 0

0.004573 1



,G =





−0.004753

−0.0001242



,

C =
[

0 1
]

.
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Figure 6.23: Results of position control of DC Motor with10% packet loss

In this section, experimental results are briefly discussedwith DC motor as a plant

in the presence of random fractional delays, packet loss andmatched uncertainty sit-

uations. The position of DC motor is considered as a reference signal. The variable
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Figure 6.24: Result of magnified position control of DC Motorwith 10% packet loss
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Figure 6.25: Result of compensated sliding variable with10% packet loss

Time (sec)
0 10 20 30

S
lid

in
g 

V
ar

ia
bl

e

-4

-2

0

2

4

Figure 6.26: Magnified compensated sliding variable with10% packet loss
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Figure 6.27: Control signal with10% packet loss
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Figure 6.28: Magnified control signal with10% packet loss

fractional delays are computed using Poisson’s distribution considering the same as-

sumptions as mentioned in the simulation results section. The values of sliding gain

parameterCs, sliding band|s(k)| and user defined constantψ are same in order to study

the effect of proposed control algorithm on the real time system. In simulation section
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Figure 6.29: Compensated control signalua(k) with 10% packet loss
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Figure 6.30: Magnified compensated control signalua(k) with 10% packet loss
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Figure 6.31: Compensated control signalua(k) with 30% packet loss
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Figure 6.32: Magnified compensated control signalua(k) with 30% packet loss
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Figure 6.33: Tracking Response with network delays greaterthan sampling interval

the effects of control algorithm are well explained under two different conditions (i) in

the absence of packet loss and (ii) in the presence of packet loss. But, when any system

is connected to real time networks there are very few chancesof secure communication
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Figure 6.34: Magnified tracking response with network delays greater than sampling
interval

between the plant and controller in the terms of data transfer. Some of the data packets

will be lost due to various reasons such as jitter, congestion or traffic problems within

the network. So, in real time application it is essential to study the effect of control al-

gorithm in the presence of packet loss and random time delay.Figures (6.23) to (6.34)

shows the nature of the DC motor plant in terms of reference tracking, compensated

sliding variable, control signal and compensated control signal for specified random

fractional delays shown in Figure (6.2), matched uncertainty shown in Figure (4.1) with

probability of single packet loss̄α = 0.1. Figure (6.23) shows the tracking response of

the DC motor. It can be observed that the position of DC motor is controlled accurately

in the presence of random fractional delays and packet loss situation. In order to show

the effect of time delay compensation the magnified trackingresult is shown in Figure

(6.24). It can be noticed that the effect of total network fractional delay is compensated

as the output tracks the reference signal at first sampling instant. The same effect of

fractional delay compensation is observed in compensated sliding variable and control

signal as shown in Figures (6.25) and (6.27) respectively. Observing the magnified re-

sults shown in Figures (6.26) and (6.28), it can be noticed that both the parameters are

computed from first sampling instant. Thus the effect of random fractional delay from

sensor to controller is compensated at the sliding surface.The magnified result of ran-

dom fractional delay from sensor to controller is shown in Figure (6.3). Figure (6.29)

shows the nature of compensated control signal. It can be noticed that the effect of ran-

dom fractional delay from controller to actuator is compensated at the actuator side and

converges to zero rapidly without increasing the amplitude. The magnified result of the

same in Figure (6.30). The magnified result of controller to actuator delay is shown in

Figure (6.4). The efficacy of the proposed algorithm was further tested by increasing the

packet loss probability by three times that is,ᾱ = 0.3 for specified network delays and

matched uncertainty. Observing the results of compensatedcontrol signal as shown in
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Figures (6.31) and (6.32), it can be noticed that the effect of fractional delay at the actu-

ator side is still compensated with packet loss probabilityof 30%. Figure (6.33) shows

the nature of tracking response when random fractional delay is greater than sampling

interval. It can be noticed that the performance of the system goes to unstable condition

and does not compensate the effect of random fractional delays. The magnified result

of the same is shown in Figure (6.34).

Thus from above implementation results, it can be noticed that the proposed control

algorithm proves to be robust and efficient controller as it shows the stable response

satisfying condition (6.33) and compensates the effect of specified random fractional

delays satisfying (6.5) in presence of packet loss and matched uncertainty.

6.6 Conclusion

In this chapter, we proposed the discrete-time SMC (Non-Switching) algorithm in the

presence of random fractional delay and packet loss in the presence of uncertainty.

The random fractional delay is modelled using Poisson’s distribution and packet loss

is modelled using Bernoulli’s distribution function. The random fractional delay in

forward and feedback channels are compensated by Thiran Approximation in the slid-

ing surface and actuator end respectively. A novel sliding surface is designed using

Thiran’s Approximation. A non-switching type discrete-time sliding mode controller

is designed such that system states slide along the proposedcompensated surface and

maintain within the specified band. The stability conditionof closed loop NCSs is de-

rived using Lyapunov approach that ensures finite time convergence of system states

in presence of network non-idealities. The effectiveness of the proposed algorithm is

examined under different possible conditions through illustrative example as well as

real time plant. The results proved that the control law derived using Thiran’s Approxi-

mation compensates the random fractional delay precisely even in the presence of30%

packet loss as well as networked delay having values greaterthan sampling interval.
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CHAPTER 7

DISCRETE-TIME NETWORKED SLIDING MODE

CONTROL (DNSMC) WITH MULPTIPLE PACKET

TRANSMISSION POLICY

7.1 Introduction

In communication domain, generally the data transfer between two devices takes place

in the form of frames or packets. It mainly depends upon the distance of communi-

cation. When the distances are shorter the data are transmitted in the form of frames.

However, when the distances are longer the same frame is breakdown in the form of

small packets in order to have secure and reliable communication. In NCSs the data

transfer takes place over the longer distance. So, those data in the form of frames are

converted into small packets which are defined as multiple packets. When such pack-

ets are lost during transmission it is defined as multiple packet loss. It is necessary

to study the effect of such lost packets during transmission. In this chapter, a mathe-

matical model is derived for multiple packet loss using probability function approach.

The random time delay and multiple packet loss are treated separately in order to study

the outcome of both parameters on the system. The random communication delay and

multiple packet loss in the forward and feedback channel arecompensated through

Thiran approximation and probability distribution respectively. Based on the proposed

approach the sliding surface is designed and discrete-timesliding mode control law

is derived that computes the control actions in the presenceof random network delay

and multiple packet loss. The stability of the closed loop NCS is also derived using

Lyapunov approach that assures the finite time convergence in the presence of network

non-idealities. The efficacy of the proposed algorithm is examined through simulation

and experimental results in the presence of random communication fractional delays

and multiple packet loss.



7.2 Problem Formulation

Figure (7.1) depicts the block diagram of networked controlsystem with multiple pack-

ets transmission. It can be observed that the state information and control information

available through sensor and controller are splitted in theform of small packets and

transmitted through the network. These transmitted packets will suffer from sensor

to controller random delay and controller to actuator random delay. During multiple

packets transmission it is necessary to consider three different situations (i) none of the

packets are lost (ii) any one or more than one packet is lost or(iii) all the packets are

lost. If second or third situation arises during transmission the frame structure would be

incomplete at the controller side and the false control actions will be generated which

affects the performance of the system. The multiple packetsreceived at the controller

side and actuator side are converted in the form of frames having fixed length and after

processing in the form of small packets they are transmittedback to the networks.

Figure 7.1: Block diagram of NCS with multiple packets transmission

In order to study the effect of multiple packet loss under random time delay com-

pensation on the system it is necessary to developed the mathematical model of mutiple

packet loss in the forward and feedback channel. The next segment describes the math-

ematical model of mutiple packet loss that is generated fromsensor to controller and

controller to actuator. The concept of probability distribution function is used to mod-

elled multipe packet loss.
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Multiple Packet Loss Model From Sensor to Controller and Controller to Actuator

As discussed earlier, in mutiple packet loss model the frames are splitted in the form of

small packets. Let, the plants states are splitted intor equal parts given as:

x(k) =
[

xT1 (k) xT2 (k) ... xTr (k),
]T

(7.1)

and every part of plant state is lumped into packet.

Similarly, let the control signal is splitted intos equal parts given as:

u(k) =
[

uT1 (k) uT2 (k) ... uTs (k),
]T

(7.2)

and every part of control state is lumped into packet. wherexi(k)ǫR
ri , riǫZ+ and

Σri=1 = n andui(k)ǫRsi, siǫZ+ andΣsi=1 = p.

For, simplicity we consider the case that the plant states and control signals are splitted

Figure 7.2: Schematic Diagram of NCSs with state data frame splitted in two parts

in two parts. Figure (7.2) describes the schematic diagram of networked control sys-

tem with multiple packet transmission with state data frames splitted in two equal parts.

As shown in Figure (7.2) two different cases are consider on each side of the network

medium in form of switch positionS1 to S6. When the switch position is atS3 or S6

none of the packets will be lost or either all the packet will be lost at the controller and

actuator side but when the switch is at positionS1 or S2 andS4 or S5 anyone packet

is lost on either side of the channel. As shown in Figure (7.2)at sampling instanth,

the state data packets available at the input of the controller will beXc1(k) andXc2(k)

respectively.
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Thus the process of state data transmission can be describedas follows:

Case− I: If the switch is in positionS3 then,

Xc1(k) =







x1(k − 1); if r1 ≺ Ploss1

x1(k); if otherwise

Xc2(k) =







x2(k − 1); if r2 ≺ Ploss2

x2(k); if otherwise

Case− II: If the switch is in positionS2 then,

Xc1(k) = x1(k)

Xc2(k) =







x2(k − 1); if r2 ≺ Ploss2

x2(k); if otherwise

Case− III: If the switch is in positionS1 then,

Xc1(k) =







x1(k − 1); if r1 ≺ Ploss1

x1(k); if otherwise

Xc2(k) = x2(k)

where,0 ≺ Ploss1 ≺ 1 and0 ≺ Ploss2 ≺ 1 is the probability of multiple state packet

loss over the network andr1, r2 are the random variables uniformly distributed over the

interval [0,1].

It is also assumed that the measured outputs, which are equivalent to states of the sys-

tem are sent to the controller via communication channel. Asa result, the measurement

may involve randomly varying communication delays. The communicated state vari-

able over the network having the random delays from sensor tocontroller is given by:

xc(k) =





Xc1(k − τ̂sc)

Xc2(k − τ̂sc)



,

simplyfying it we get,

xc(k) = Z1Xc1(k − τ̂sc) + Z2Xc2(k − τ̂sc), (7.3)
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where,

Z1 = diag(Ir1, 0) andZ2 = diag(Ir2, 0).

Thus the generalized equation is given by:

xc(k) = Σri=0Zixi(k − τ̂sc), (7.4)

where,Zi = diag(0, ...., Iri, ....0), xc(k) is the communicated state variable over the

network and̂τsc is sensor to controller random fractional delay.

Similarly, the process of control data transmission can be described as follows:

Case− IV: If the switch is in positionS6 then,

U1(k) =







u1(k − 1); if r3 ≺ Ploss3

u1(k); if otherwise

U2(k) =







u2(k − 1); if r4 ≺ Ploss4

u2(k); if otherwise

Case−V: If the switch is in positionS5 then,

U1(k) = u1(k)

U2(k) =







u2(k − 1); if r4 ≺ Ploss4

u2(k); if otherwise

Case−VI: If the switch is in positionS4 then,

U1(k) =







u1(k − 1); if r3 ≺ Ploss3

u1(k); if otherwise

U2(k) = u2(k)

where,0 ≺ Ploss3 ≺ 1 and0 ≺ Ploss4 ≺ 1 is the probability of the multiple control

packet loss over the network andr3, r4 are the random variable uniformly distributed

over the interval [0,1].

The measured outputs, which are equivalent to control signal of the system are sent to

the actuator via communication channel. As a result, the measurement may involve

randomly varying communication delay. The communicated controlled variable over

the network having the random delays from controller to actuator is given by:
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ua(k) =





U1(k − τ̂ca)

U2(k − τ̂ca)



,

Simplyfying it we get,

ua(k) = D1U1(k − τ̂ca) +D2U2(k − τ̂ca), (7.5)

where,

D1 = diag(Is1, 0) andD2 = diag(Is2, 0).

Thus the generalized equation is given by:

ua(k) = Σsj=0Djuj(k − τ̂ca), (7.6)

where,Dj = diag(0, ...., Isj , ....0), ua(k) is the control signal available at actuator side

andτ̂ca is controller to actuator random fractional delay.

Remark − 9: In this chapter nature of the system, total random fractional network

delaysτ̂ , sensor to controller random fractional delayτ̂sc and controller to actuator ran-

dom fractional delaŷτca would remain same as described in section (6.2).

Problem Statement: The main objective, is to design the discrete-time slidingmode

control law for system (6.3,6.4) in the presence of random fractional delaŷτsc and τ̂ca

with multiple packet loss situation and matched uncertainty satisfying (6.5).

Once the mathematical model of multiple packet loss is derived the next step is to de-

sign the compensated sliding surface and discrete-time control law that compensates the

effect of random fractional delays in the presence of multiple packet loss and matched

uncertainty.

7.3 Design of Sliding Surface With Multiple Packet Loss

This section describes the designing of compensated sliding surface under multiple

packet loss presented in the form ofLemma − 4.

Lemma − 4: The compensated sliding surface for the given system (6.3,6.4) with

sensor to controller random fractional delay under multiple packet loss and matched
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uncertainty satisfying condition (6.5) and (3.7) is given as:

s(k) = Σri=0[CsZixi(k)− ςCsZixi(k − 1)], (7.7)

where,Cs is the sliding gain,ς is the parameter designed using Thiran Approximation.

Proof : The sliding variable with sensor to controller random fractional delay and mu-

tiple packet loss is given as:

s(k) = Csxc(k). (7.8)

Substitutingxc(k) from Eqn. (7.4) to Eqn. (7.8) we get,

s(k) = Σri=0CsZixi(k − τ̂sc), (7.9)

where,τ̂sc is random fractional delay from sensor to controller.

The random fractional delay from sensor to controller(τ̂sc) is model using Poisson’s

distribution function defined in Eqns. (6.9) and (6.10) respectively.

Applying z-transform to above Eqn. (7.9) we get,

s(k) = Σri=0CsZi[xi(z)z
−τ̂sc ]. (7.10)

Using Thiran Approximation and Eqn. (6.14),z−τ̂sc is given as

s(k) = Σri=0CsZixi(z)[1 − ςz−1], (7.11)

where,ς = τ̂sc
τ̂sc+1

.

Applying inversez-transform to above Eqn. (7.11) we get,

s(k) = Σri=0CsZi[xi(k)− ςxi(k − 1)]. (7.12)

Further simplification,

s(k) = Σri=0[CsZixi(k)− ςCsZixi(k − 1)]. (7.13)

This completes theproof .

The above Eqn. (7.13) represents compensated sliding surface with multiple packet
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loss. It is noticed that at each sampling interval the effectof delayed sensor packets are

compensated through immediate past state data packets, current state data packets and

parameterς. While the effect of multiple packet loss is compensated through probabil-

ity distribution function. If random variabler is greater than packet loss probabilities

then the data packetxi(k) is received and, if random variabler is lesser than packet loss

probabilities thenxi(k − 1) will be received at the controller.

The next section represents the design of discrete-time sliding mode control law

along with stability analysis in the presence of multiple packet loss and matched uncer-

tainty.

7.4 Discrete-Time Sliding Mode Control Law With Ran-

dom Fractional Delay and Multiple Packet Loss

This section discusses the derivation of discrete-time sliding mode control law for NCS

using sliding surface (7.13) in the form ofTheorem− 5.

Theorem − 5: The discrete-time sliding mode control law for system (6.3,6.4) in the

presence of sensor to controller random fractional delay(τ̂sc), multiple packet loss and

matched uncertaintyd(k) satisfying (3.7) is given as,

u(k) = −(CsG
′)−1[Hxi(k)− Ixi(k)− J(s(k)) + ds(k)− d1]− d(k). (7.14)

where,

G′ = Σri=0(ZiG),H = Σri=0(CsZiF ), I = Σri=0α
′CsZi, andJ = {1− q[s(k)]}.

Proof : Let us define non-switching reaching law described in (6.25) considering the

same parameters in the presence of network fractional delayas:

s[(k + 1)h] = {1− q[s(k)]} − ds(k) + d1. (7.15)

The above all parameters such as{q[s(k)]}, ds(k), d1, condition of user defined con-

stantψ and sliding band|s(k)| remain same as defined in Eqns. ((6.25) to (6.27))
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respectively.

Substituting the value ofs(k + 1) in Eqn. (7.15) we get,

Σri=0CsZixi(k + 1)− α′ZiCsxi(k) = {1− q[s(k)]} − ds(k) + d1.

Substituting the value ofxi(k + 1),

Σri=0ZiCs[Fxi(k) +G(u(k) + d(k))]− α′ZiCsxi(k) = (7.16)

{1− q[s(k)]} − ds(k) + d1.

On simplifying gives,

Σri=0ZiCsFxi(k) + Σri=0ZiCsG(u(k) + d(k))− α′ZiCsxi(k) = (7.17)

{1− q[s(k)]} − ds(k) + d1.

Further solving the above Eqn. (7.17) control law can be expressed as:

u(k) = −(CsG
′)−1[Hxi(k)− Ixi(k)− J(s(k)) + ds(k)− d1]− d(k). (7.18)

where,

G′ = Σri=0(ZiG),H = Σri=0(CsZiF ), I = Σri=0α
′CsZi, andJ = {1− q[s(k)]}.

This completes theproof .

The control law defined in Eqn. (7.18) is transmitted to the network in the form of

small packets. These packets will experience the controller to actuator fractional delay.

Thus the mathematical model of multiple packets with controller to actuator fractional

delay is given as:

ua(k) = Σsj=0Djui(k − τ̂ca), (7.19)

where,Dj = diag(0, ...., Isj , ....0), ua(k) is the control signal computed at actuator

side andτ̂ca is controller to actuator random fractional delay defined using Poisson’s

distribution.

Using Thiran Approximation the communicated control signal in Eqn. (7.19) can be
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transformed to compensated control signal as,

ua(k) = Σsj=0Djuj(k)− β ′Djuj(k − 1), (7.20)

β ′ = τ̂ca
1+τ̂ca

.

From Eqn. (7.20), it can be noticed that at each sampling instant the effects of random

packet loss and random network delay from controller to actuator are compensated in

control signal through proposed technique.

The next section discusses about the stability of the closedloop system such that the

system states remain within the specified band using controllaw (7.18).

7.4.1 Stability Analysis

The trajectories of the closed loop system (6.3,6.4) with the controller mentioned in

Eqn. (7.18) in the presence of random fractional delay(τ̂) satisfying (6.26), multiple

packet loss and matched uncertaintyd(k) drive towards the sliding surface(7.13) such

that the following condition holds true:

ηsT (k)s(k) ≻ 0. (7.21)

Proof : The compensated sliding surface in (7.13) is given by:

s(k) = Σri=0CiCsxi(k)− α′ZiCsxi(k − 1). (7.22)

Let us consider Lyapunov function as,

Vs(k) = sT (k)s(k). (7.23)

Taking forward difference we have,

∆Vs(k) = sT (k + 1)s(k + 1)− sT (k)s(k). (7.24)
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Using Eqn. (7.13) we get,

∆Vs(k) = [Σri=0ZiCsxi(k + 1)− α′ZiCsxi(k)]
T [Σri=0Zi (7.25)

Csxi(k)− α′ZiCsxi(k − 1)]−

sT (k)s(k).

Substituting the value ofxi(k + 1),

∆Vs(k) = [Σri=0ZiCs[Fxi(k) +G(u(k) + d(k))]− α′ZiCsxi(k)]
T [Σri=0ZiCs (7.26)

[Fxi(k) +G(u(k) + d(k))]− α′ZiCsxi(k − 1)]−

sT (k)s(k).

Substituting the value ofu(k) and further simplifying it we get,

∆Vs(k) = κ− sT (k)s(k). (7.27)

where,

κ = [[1 − q(s(k))]s(k) − ds(k) + d1]
T [[1 − q(s(k))]s(k) − ds(k) + d1]. The termκ

can be tuned closed to zero by appropriately selecting the parameterψ. If κ is closed to

zero thensT (k)s(k) will be larger thanκ. Thus for any small parameterη we have,

∆Vs(k) ≺ ηsT (k)s(k). (7.28)

Thus, by tuning the parameterψ, we have,∆Vs(k) ≺ ηsT (k)s(k) which guarantees the

convergence of∆Vs(k) and implies that any trajectory of the system (6.3,6.4) willbe

driven onto the sliding surface and maintain on it.

This completes theproof .

7.5 Results and Discussions

In this section the efficacy of the designed control algorithm is validated in the pres-

ence of multiple packet loss and matched uncertainty applied at the input channel of the

system. The simulation results are carried out using illustrative example while imple-
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mentation results are carried out on DC motor plant considering various possibilities of

multiple packet loss.

7.5.1 Simulation Results

Consider the continuous-time LTI system as,

ẋ(t) = Ax(t) +Bu(t− τr) +Dd(t), (7.29)

y(t) = Cx(t), (7.30)

where,

A =





−0.7 2

0 −1.5



, B =





−0.03

−1



,

C =
[

1 0
]

,D =





1

1



.

Dsicretizing the above system with sampling interval ofh = 30msec we get,

x(k + 1) = Fx(k) +Gu(k − τ̂) + d(k), (7.31)

y(k) = Cx(k), (7.32)

where,

F =





0.9792 0.05805

0 0.956



,G =





−0.001771

−0.02934



,

C =
[

1 0
]

.
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Figure 7.3: Total networked fractional delay
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Figure 7.4: Magnified sensor to controller random fractional delay
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Figure 7.5: Magnified controller to actuator random fractional delay
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Figure 7.6: State variablex1(k)
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Figure 7.7: Magnified state variablex1(k)

Figures (7.6) to (7.21) shows the nature of the system in the presence of network

non-idealities. In order to prove the robustness of the proposed control algorithm slow

time varying disturbance is applied to the input of the system. Figure (7.3) shows the

response of total network induced delay modelled using Poisson’s distribution. It is

assumed that the probability of the networked delay lesser than sampling interval is
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Figure 7.8: State variablex2(k)
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Figure 7.10: Compensated sliding variables(k)
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Figure 7.11: Magnified compensated sliding variables(k)

p = 0.67 while the probability of networked delay greater than sampling interval is

p = 0.33. This assumption indicates that according to Poisson’s distribution at every

sampling interval at least one event is generated with zero trial. Thus, the specified net-

work delay range computed through Poisson’s distribution is0.003sec ≤ τ ≤ 0.055sec

respectively.
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Figure 7.13: Magnified control signalu(k)
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Figure 7.14: Compensated control signalua(k)
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Figure 7.15: Magnified compensated control signalua(k)

The sliding gain parameter computed using discrete LQR method withQ = diag(1000, 1000)

andR = 1 isCs = [−14.234 −20.625] havingψ = 10. The quasi-sliding mode band

comes out to be|s(k)| � +0.1 to−0.1.

Figures (7.6) to (7.15) show the nature of state variables, sliding surface, control signal

computed at controller side and compensated control signalunder multiple packet trans-
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Figure 7.16: Compensated control signalua(k) with 10% packet loss
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Figure 7.17: Magnified compensated control signalua(k) with 10% packet loss
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Figure 7.18: Compensated control signalua(k) with 20% packet loss
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Figure 7.19: Magnified compensated control signalua(k) with 20% packet loss

mission. Figures (7.6) and (7.8) show the nature of state variables[x1 x2] with initial

conditions[5 −5] respectively. It is observed that both the state variables converge

to zero from their specified initial condition in the presence of specified random frac-

tional delay and multiple packets transmission. In order todetermine the exact effect

of random fractional delay the magnified results of the same are shown in Figures (7.7)
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Figure 7.20: Compensated control signalua(k) with 30% packet loss
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Figure 7.21: Magnified compensated control signalua(k) with 30% packet loss

and (7.9) respectively. It is noticed that both the state variables are computed from first

sampling instant even in the presence of random fractional delay and multiple packet

transmission in forward and feedback channel. The same effect of fractional delay com-

pensation is observed in sliding variable Figure (7.10) andcontrol signal Figure (7.12)

computed at controller side. It is observed that both the parameters are computed from

first sampling instant even in the presence of sensor to controller random fractional de-

lay as shown in Figure (7.4). The magnified results of slidingvariable and control signal

computed at controller side are shown in Figures (7.11) and (7.13) respectively. Figure

(7.14) shows the result of compensated control signal computed at the actuator end.

Observing the magnified result in Figure (7.15), it is noticed that the effect of random

fractional delay from controller to actuator is also compensated as it is computed from

first sampling instant. Figure (7.5) shows the magnified result of controller to actuator

random fractional delay.

The robustness of the proposed algorithm is further extended for multiple packet loss.

The multiple packet loss is considered in both the channels simultaneously. It is as-

sumed that more than one packet is lost on either side of the channel during transmis-

sion. Figures (7.16), (7.18) and (7.20) show the nature of compensated control signal

computed at actuator side under10%, 20% and30% multiple packet loss respectively. It

can be observed that the effect of random fractional delay from controller to actuator is

compensated precisely as the controller signal is computedfrom first sampling instant
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in the case of10% and20% packet loss. While in30% packet loss the effect of random

fractional delay is not compensated. The magnified results of the same are shown in

Figures (7.17), (7.19) and (7.21) respectively.

Thus, the proposed control algorithm compensates the effect of random fractional delay

and shows the stable response satisfying Eqn. (7.21) in the presence of multiple packet

loss and matched uncertainty.

7.5.2 Experimetal Results

In this section the proposed control algorithm is validatedon Quanser DC Motor as

a plant connected in networked medium. The position of the motor is controlled for

the given reference input in the presence of mutiple packet transmission and matched

uncertainty. The state space form of DC Motor plant of Eqn. (3.34) is given as,

ẋ(t) = Ax(t) +Bu(t− τr) +Dd(t), (7.33)

y(t) = Cx(t), (7.34)

where,

A =





−201 0

1 0



, B =





1

0



,

C =
[

0 1
]

,D =





1

1



.

Dsicretizing the above system with sampling interval ofh = 30msec we get,

x(k + 1) = Fx(k) +Gu(k − τ̂) + d(k), (7.35)

y(k) = Cx(k), (7.36)

where,

F =





0.001836 0

0.004573 1



,G =





−0.004753

−0.0001242



,

C =
[

0 1
]

.
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Figure 7.22: Position Control of DC Motor under multiple packet transmission
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Figure 7.23: Magnified position control
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Figure 7.24: Compensated sliding variables(k)
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Figure 7.25: Magnified compensated sliding variables(k)
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Figure 7.26: Control signalu(k)

Figures (7.22) to (7.35) show the nature of DC motor plant in the presence of ran-

dom network fractional delay, multiple packet loss and matched uncertainty. The val-

ues of sliding gainCs, sliding band|s(k)| and user defined constantψ are same as
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Figure 7.27: Magnified control signalu(k)
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Figure 7.28: Compensated control signalua(k)
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Figure 7.29: Magnified compensated control signalua(k)
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Figure 7.30: Compensated control signalua(k) with 10% multiple packet losses
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Figure 7.31: Magnified compensated control signalua(k) with 10% multiple packet
loss

considered in simulation section. The results of position control, sliding variable, con-

trol signal computed at the controller side and compensatedcontrol signal computed

at actuator side are carried out in the presence of specified network delay range of
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Figure 7.32: Compensated control signalua(k) with 20% multiple packet losses
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Figure 7.33: Magnified compensated control signalua(k) with 20% multiple packet
losses
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Figure 7.34: Compensated control signalua(k) with 30% multiple packet losses
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Figure 7.35: Magnified compensated control signalua(k) with 30% multiple packet
losses

0.003sec ≤ τ ≤ 0.055sec. This delay range is computed through Poisson’s distribu-

tion under same assumptions mentioned in simulation section. The slow time varying

disturbance is applied to the input of the system defined as matched uncertainty.

The implementation results are carried out in two parts: (i)the first part (Figures (7.22)

to (7.29)) describes the effect of compensation algorithm on the system under multiple

packet transmission, (ii) while second part (Figures (7.30) to (7.35)) specifies the effect

of random fractional delay on the control signal computed atthe actuator side in the

presence of multiple packet loss.
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Figure (7.22) shows the nature of reference tracking response of DC motor plant in the

presence of network non-idealities. It is noticed that the position of the DC motor is

controlled according to change in the reference signal for the specified fractional delay

and matched uncertainty under multiple packet transmission. In order to show the exact

effect of compensation the magnified result of the same is shown in Figure (7.23). It

is observed that the output signal responds the reference input at first sampling instant

even in the presence of random fractional delay. The same effect of compensation al-

gorithm is observed in sliding surface (Figure (7.24)), control signal computed at the

controller side (Figure (7.26)) and compensated control signal computed at the actuator

side (Figure (7.28)). It can be observed that all the three parameters slides towards the

origin and remain within the specified band(6.27) over a finite interval of time. The

magnified results of the same are shown in Figures (7.25), (7.27) and (7.29) respec-

tively. Observing the magnified results it is noticed that all the three parameters are

computed from initial sampling instant even in the presenceof sensor to controller frac-

tional delay and controller to actuator fractional delay.

Figures (7.30) to (7.35) show the nature of compensated control signal computed at

actuator side under multiple packet loss. It is assumed thatmultiple packet loss takes

place on either side of the network medium. So the actual effect of multiple packet loss

can be studied at the actuator side rather than controller side. Figures (7.30), (7.32) and

(7.34) shows the nature of compensated control signal at theactuator side with packet

loss probabilities of10%, 20% and30% respectively. It is noticed that as the multiple

packet loss probability increases the robust terms will generate more control actions to

stabilize the system which in turn makes the system oscillatory in nature. The control

signal shows the unacceptable response when the packet lossprobability increases to

30%. Moreover, it is also observed from magnified results ((7.31), (7.33) and (7.35))

that the effect random fractional delay within the network is also not compensated as

the packet loss is increased.

Thus, from results it can be noticed that with real time system the proposed algorithm

shows the stable response satisfying (7.21) under20% multiple packet loss for the spec-

ified random fractional delay and matched uncertainty.
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7.6 Conclusion

In this chapter, time delay approximation algorithm is proposed in discrete-time do-

main that compensates the effect of variable fractional delay in the presence of mutiple

packet loss condition. The random fractional delay is modelled using Poisson’s distri-

bution while multiple packet loss is modelled using probability distribution function.

The multiple packet loss model is derived at the controller side as well as at the actu-

ator side. The effects of random fractional delay as well as multiple packet loss are

compensated in forward channel as well as feedback channel.The discrete-time sliding

mode controller is designed based on the proposed sliding surface. The stability condi-

tion of the closed loop system is derived using Lyapunov approach such that the system

states remain within the specified band over a finite intervalof time. The efficacy of

the proposed control algorithm is checked under different conditions through illustra-

tive example and real-time plant. The simulation and experimental results shows that

the discrete-time control law derived using Thiran’s Approximation technique compen-

sates the effect of random fractional delay even in the presence of multiple packet loss

with probability of20% and matched uncertainty.
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CHAPTER 8

CONCLUSION, FUTURE SCOPE AND

CHALLENGES

8.1 Conclusion and Future Scope

In this thesis, a novel idea of compensating the fractional delay in the sliding surface is

introduced. The effect of fractional delay generated in NCSdue to the presence of the

communication medium is compensated using Thiran approximation technique. The

sliding surface designed so that it slides along the predetermined surface according to

fractional delays. Using this novel approach, a switching-type discrete-time networked

sliding mode controller is designed which computes the control sequences in the pres-

ence of deterministic fractional delay and matched uncertainty. The stability of the

closed loop system is assured by using Lyapunov approach. The efficacy of the pro-

posed algorithm is tested on DC Servo motor setup with different network delays and

external disturbances. The results were also compared withthe conventional SMC. It is

concluded that the fractional delay approximated using Thiran approximation is more

efficient technique as it compensates the fractional networked delays then conventional

discrete-time sliding mode control.

The major drawback of switching type discrete-time slidingmode controller is that it

generates more chattering due to which the system generatesoscillatory type of be-

haviour. So, to overcome this issue a non-switching type discrete-time sliding mode

controller is designed such that system states slide along the proposed compensated

surface and maintain within the specified band. The stability of the closed loop sys-

tem is assured using Lyapunov approach through proposed control law. The efficacy

of the proposed algorithm is tested through illustrative example as well as DC servo

motor setup with different deterministic fractional delays and matched uncertainty. The

results were also compared with switching type SMC as well asconventional SMC.

It is concluded that non-switching type SMC provides fasterconvergence without in-

creasing the amplitude of control signal and offers better fractional delay compensation



than switching-type SMC and conventional SMC. The efficacy of the proposed control

algorithm is also tested under real-time networks using True-Time simulator. The per-

formance of the control algorithm is checked using CAN and Switched Ethernet as a

network medium in the presence of packet loss condition. It can be noticed from results

that the control law derived using Thiran’s Approximation compensates the effect of

fractional network delay very precisely even in the presence of real-time networks and

packet loss situation.

Later on, the concept of Thiran Approximation is used in Multi-rate Output feedback

approach in which the sliding surface and control law are computed based on availabil-

ity of the output information. The main advantage of using multirate output feedback

approach is that the system states are computed based on the output information avail-

able and the error between computed as well as estimated state variables becomes zero

exactly after one sampling instant. Using this novel approach a multirate output feed-

back discrete-time networked sliding mode control law is derived that compute the con-

trol sequences in the presence of deterministic fractionaldelay and matched uncertainty.

The stability condition of closed loop NCSs is derived usingLyapunov approach that

ensures finite time convergence of system states in presenceof network non-idealities.

The effectiveness of the proposed algorithm is examined under different possible con-

ditions through illustrative example.

Further, the concept of Thiran Approximation is examined for random fractional de-

lays with single packet loss situation. The random fractional delay is modelled using

Poisson’s distribution function and packet loss is modelled using Probability distribu-

tion function. The discrete-time sliding mode controller is designed using compensated

sliding surface in the presence of random fractional delays, packet loss and matched

uncertainty. The stability of the closed loop system is derived that ensures finite time

convergence in the presence of random fractional delay, packet loss and matched un-

certainty. The effectiveness of the proposed control algorithm is examined through DC

servo motor setup under random fractional delay and packet loss. The results proved

that the control law derived using Thiran’s Approximation compensates random frac-

tional delay accurately even in the presence of single packet loss with probability of

30% as well as networked delays having values greater than sampling interval.

Lastly, the same concept of Thiran Approximation is carriedout for random fractional

delay with multiple packet loss situations. The multiple packet loss situation is mod-
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elled using Probability distribution function while random fractional delay is modelled

using Poisson’s distribution. The discrete-time sliding mode control law is derived that

compensates the effect of random fractional delay with multiple packet loss using com-

pensated sliding surface. The stability of the closed loop NCS is assured through Lya-

punov approach under multiple packet transmission. The efficiency of proposed control

algorithm is verified through DC servo motor plant under random fractional delay, mul-

tiple packet loss and matched uncertainty. The results proved that the proposed control

law works efficiently and compensates the effect of random fractional delay even in the

presence of multiple packet loss with probability of30% as well as networked delays

greater than sampling interval.

In future, the proposed control algorithm can be extended for Wireless Networked Con-

trol System (WNCS) as it possesses random time delay and packet loss. Morover the

efficacy of the proposed algorithm is checked for direct structure NCS. The same can

be extended for hierarchical structure and shared network structure NCS. The results

proved that proposed control algorithm operates properly for the state feedback based

controller in all different situations such as deterministic delay, random delay, single

packet loss and multiple packet loss. In future, the same work can be extended for

multi-rate output feedback controllers considering the same network non-idealities.

8.2 Challenges

In Networked Control System although much work has been carried out, but still there

are various challenges that has to be taken care while designing any control algorithm.

NCS deals with various open research problems due to the presence of communication

medium. Some of the challenges are:

• In some of the applications it might be possible that the delays are greater than
the sampling interval. So, in such cases the control algorithm designed for time
delay lesser than sampling interval will not able to work efficiently. Thus, in such
cases there is a need for developing some robust technique which takes care of
the networked delay having value greater than sampling interval.

• There are no standard algorithm available in the literatures that discusses about
the variable packet loss model. However, in the existing models, network-induced
delays and packet dropouts are lumped together. As a result,it is hard to distin-
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guish their respective effects on NCSs. Thus, there is need for developing some
model that takes care of only packet loss.

• In event-triggered control and filtering, it is often to assume that packet dropouts
and packet disorders do not occur. This assumption is not practical when pack-
ets are transmitted through a communication network. How todeal with packet
dropouts and packet disorders in event triggered control and filtering is challeng-
ing. Up to date, taking packet dropouts and packet disordersinto account, no
efficient approaches are proposed to design event triggeredcontrollers and filters.

• Distributed networked control and distributed network based filtering are still at-
tractive and challenging. Although some results on these issues are reported in the
literature, they are usually based on some strong assumptions when parts of net-
work constraints are taken into account. In fact, many practical factors need to be
considered for distributed control and filtering in networkenvironments. To men-
tion a few, network-induced delays in different channels between an agent and
its neighbours are different and time-varying, packet dropouts occur randomly in
different communication channels, the topologies of the agents in a distributed
system are not always the same at any time, and so on. These factors indeed
make the analysis and synthesis of distributed networked control and distributed
network-based filtering more complicated, especially for distributed systems with
a large number of agents. (Zhanget al., 2016)

• For industrial control and applications of NCSs, it is interesting to investigate
possible positive effects of network-induced delays and packet dropouts on NCSs.
There is no such algorithm designed that considers the positive effect of these
parameters for industrial applications.
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