GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MANAGEMENT OF ENERGY AND ENVIRONMENT IN WET PROCESSING (COURSE CODE: 3362802)

Diploma Program in which this course is offered	Semester in which offered
Textile Processing Technology	Sixth

1. RATIONALE

This course provides the knowledge regarding basic energy conservation and environment management as applicable to textile process industry. Since textile process industries generate effluent, it is required to treat it before discharging into environment. This course therefore also provides the clear concept of effluent treatment and pollution load and its control for various types of textile wet processing. This course also creates awareness about newly invented membrane technology to enable them to apply on various separation processes for water used in textiles.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire the following competency required by the industry:

• Undertake effluent processing from textile wet processes to conserve water and energy.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Strategies for energy savings and environment protection as per country laws.
- ii. Reduce consumption of fuels and steam as per norms.
- iii. Undertake water testing.
- iv. Undertake Effluent testing.
- v. Apply eco-friendly and energy efficient processes.

4. TEACHING AND EXAMINATION SCHEME

	Examination Scheme				Total Credits	Teaching Scheme		
Total Marks	Marks	(In Hours) (L+T+P) Theory Marks Practical M		(In Hours)				
	PA	ESE	PA	ESE	С	Р	Т	L
150	30	20	30	70	7	2	_	5

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics	
	(In the Cognitive Domain)		
Unit – I	1a. Justify the need for	1.1 Energy management in wet processing:	
Energy and	energy conservation and	Sources and Classification of energy	
Environment	its management.	sources	
Management	1b. Describe different types	1.2 Environment Protection act 1986 and	
	of energy.	Environment management in wet	
	1c. Explain environment	processing	
	management: water	1.3 Sources of water, its storage and	
	pollution, air pollution	distribution, Properties of water,	
	and noise pollution.	various impurities in water and their	
		effects on wet processing.	
		1.4 Management of pollution control	
Unit–II	2a. Describe quality of	2.1 Analysis of impure water its	
Water	water for wet	2.2 Water Purification : Precipitation, Ion	
Analysis,	processing.	exchange, Reverse Osmosis	
Purilication	20. Describe various	2.5 Water utilization in various textile wet	
and Litilization	purflication process for	and Einishing	
Ullisation	water.	and Finishing	
	in taxtile mill and its re	2.4 Conservation of water and its re-use	
IInit_III	3a Explain properties of	3.1 Fuels and their properties	
Steam	different types fuels	3.2 Properties of steam	
Generation	3b Describe the features of	3.3 Boilers: Lancashire, Water Tube	
and	different types of	3.4 Heating systems: Thermic fluid	
Utilisation	boilers	heating system, direct gas firing	
	3c. Describe the steam	3.5 heating system	
	distribution and	3.6 Heat Recovery: Steam distribution,	
	utilization	insulation and its material	
		3.7 Steam utilization textile wet	
		processes:(Bleaching, Dyeing, Printing	
		and finishing	
Unit– IV	4a. Describe characteristics	4.1 Characteristics of effluents and	
Effluents and	of effluents in textile	composite effluents from various	
its Treatment	industry.	sections of wet Processing.	
	4b. Describe Filtration	4.2 Analysis of industrial rffluent and	
	Technology	tolerance limits.	
	4c. Explain process,	4.3 Filtration Technology: Micro	
	chemistry and	filteration, Ultra Filteration, Nano	
	technology	Filteration, Reverse Osmosis	
	for effluent treatment	4.4 Stages of Effluent treatment plant:	
		Physical Treatment, Chemical	
		treatment and Biological Treatment.	

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In the Cognitive Domain)	
Unit – V	5a. Describe various energy	5.1 Concept of clean technology for Textile
Developments	efficient processes	Processing, Types of ecology for
in Energy	5b. Explain Eco friendly	textiles
Efficient and	processes	5.2 Steps of clean production : 3R
Eco- Friendly	5c. Describe the various Eco	technology
Processes	labels	5.3 Single stage preparatory process of
		cotton
		5.4 Eco labels and their applications

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (Theory)

Unit	Unit Title	Teaching	Distribution of Theory Mar			Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	
I.	Energy and Environment	08	2	2	4	08
	Management					
II.	Water Analysis, Purification and	20	6	8	6	20
	Utilisation					
III.	Steam Generation and Utilization	20	6	8	6	20
IV.	Effluents and its Treatment	14	4	6	4	14
V.	Developments in Energy Efficient	08	2	4	2	08
	and Eco-Friendly Processes					
	Total	70	20	28	22	70

Legends: \mathbf{R} = Remember, \mathbf{U} = Understand, \mathbf{A} = Apply and above Level (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

7. SUGGESTED EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes mainly in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical Experiment/Exercise	Approx.
No.	No.	(Outcomes in the Psychomotor Domain)	Hours
1		Determine Tetal Calida Tatal Dissolved Calida (TDC)	<u>Nequiteu</u>
1	11	Determine Total Solids, Total Dissolved Solids (TDS),	04
		Suspended Solids in a given sample of water.	
2	<u> </u>	Find out alkalinity in a given sample of water.	02
3	II	Determine total hardness of a given sample of water.	02
4	II	Find out chloride content in a given sample of water.	02
5	III	Check energy consumption for conservation in Conventional	04
		Preparatory Process and Single Stage Preparatory Process of	
		cotton.	
6	III	Check energy consumption for conservation in dyeing of different	04
		class of dyes on cellulosic fabrics.	
7	III	Check energy consumption for conservation and cost control in	04
		different vat dyeing methods.	
8	III	Compare energy consumption for conservation in case of	02
		polyester heat setting and optical whitening combined process	
		with conventional approach.	
9	III	Check energy consumption for conservation in dyeing of	02
		cellulosic fibre/fabrics with different dyes using different MLR.	
10	III	Check energy consumption for conservation in exhaustion	02
		method and padding methods of dyeing.	
11	III	Check energy consumption for conservation in printing of	02
		cellulosic fabrics with reactive dyes by different methods.	
12	IV	Find out Biochemical Oxygen Demand (BOD) of a given sample	04
		of an effluent.	
13	IV	Determine Chemical Oxygen Demand (COD) of a given sample	04
		of an effluent.	
		Total	38

Note: Perform any of the practical exercises from above list for total of minimum 28 hours depending upon the availability of resources so that skills matching with the most of the outcomes of every unit are included.

8. SUGGESTED STUDENT ACTIVITIES

- i. Do literature survey for different types of effluent treatment plant.
- ii. Collection and Study of different water analysis reports from different sources.
- iii. Prepare mini project on different type of boilers.
- iv. Collect data of effluent produced at end of each textile wet processes and make a Power point Presentation on it.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange industrial demonstration for effluent treatment plant and machineries as per unit IV
- ii. Arrange visit for demonstration of energy conservation in dyeing of different dyes
- iii. Organise Seminar/Quiz/Presentation on recent developments in the field of energy conservation and effluent for Textile.
- iv. Arrange guest lecturers from industry experts for contemporary practices in industries.
- v. Organise group discussion of students on recent trends and awareness about eco processing

10. SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Author	Title of Books	Publication
1.	Jhala P. B.	Water and effluent in Textile	Ahmedabad Textile
	Vyas M. M.	Mills	Industry's Research
	Subrahmanyam K.		Association (ATIRA),
			Ahmedabad
2	Manivasakam N.	Water used in textile	Sakthi Publication,
		processing	Coimbatore
3	Manivasakam N.	Treatment of textile processing	Sakthi Publication,
		effluents	Coimbatore
4.	Gulrajani M. L.	Energy conservation in textile	Omega Scientific
	Gupta Sanjay	wet processing	Publishers, New Delhi
5.	Parajia J. S.	Fuel and steam economy,	Textile Association Of
	Vyas M. M.	Textile Engineering Tablet-III	India (TAI), India
6.	M. Ratna Prabhu .	Heat economy in Textile Mills	Ahmedabad Textile
	Parajia J. S.		Industry's Research
	Vyas M. M.		Association (ATIRA),
	Subrahmanyam K.		Ahmedabad
7	Prayag R. S.	Bleaching, Merserising and	Shri J. Printers, Pune
		Dyeing of Cotton Materials	

B) Major Equipment/ Instrument with Broad Specifications

i.	Water	• Jacketed doubled wall, inner and outer walls are made of SS		
	heating bath	Insulating material:- Glass wool		
		• Temperature range:- 5 – 99°C		
		Thermostatic control with digital display		
		Power requirement:- 220-230V		
ii.	Laboratory	• Temperature up to 250°C		
	Oven	• Heat up time:- 45 min		
		Digital Display Electronic Controller		
		Internal Chamber:- SS 304		
		External :- Mild steel powder coated		
		Insulation:- Glass Wool 65 mm		
		• Ventilator:- Adjustable type (Aluminium)		
iii.	Padding	Maximum Working Width:- 300mm		
	Mangle	Material of Coating on bowl:- Synthetic rubber		
		• Rubber hardness:- 65°/70° shore hardness		
		• Bowl dimension:- 120 mm dia X 350 mm length		
		• Cloth speed:- variable speed. Max up to 10 mts/min		
		• Machine dimension:- L 850 X W 610 X H 640		
		Electrical Supply:- 230 V AC, Single Phase		

C) Software/Learning Websites

i. en.wikipedia.org/wiki/energy_conservation

- ii. en.wikipedia.org/wiki/Textile_effluent
- iii. http://textilefashionstudy.com
- iv. http://textilelearner.blogspot.in

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. R D Joshi**, Lecturer, Textile Processing Dept., R C Technical Institute, Ahmedabad.
- **Prof. R G Patel**, I/C Head, Textile Processing Dept., Dr. S and S S Ghandhy College of Engg. and Tech., Surat.
- **Prof. C. R. Madhu**, Adhoc Lecturer, Textile Processing R C Technical Institute, Ahmedabad.
- **Prof. D D Vyas**, Adhoc Lecturer, Textile Processing Dept., Dr. S and S S Ghandhy College of Engg. and Tech., Surat

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. C. K. Chugh, Professor, Department of Mechanical Engineering
- Dr. Joshua Earnest, Professor Department of Electrical and Electronics Engineering