GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROGRAMMABLE LOGIC CONTROLLER (COURSE CODE: 3362402)

Diploma Programme in which this course is offered	Semester in which offered
Power Electronics	Sixth

1. RATIONALE

With the advancement of technology use of PLC is increasing day by day and hence this course is intended to enable the student understand the basic concepts, operation, programming and advance applications of Programmable Logic Controller. With the help of Communication and Networking student would able to control industrial process with wireless technology. These skills developed through this course will help the student to function confidently in his/her career. It is also aimed to expose students to some of the advanced techniques used in Industrial Automation system in different industries.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Maintain PLCs used in industrial automation applications.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes .

- i. Analyse the major components of a Programmable Logic Controller (PLC)
- ii. Interpret the operation of PLC modules
- iii. Execute the PLC programming with different condition.
- iv. Establish Communication and Networking with PLC
- v. Use PLC, DCS and SCADA for industrial process control.

4. TEACHING AND EXAMINATION SCHEME

Teach (In Ho	ing Schours)	eme	Total Credits (L+T+P)	Examination Scheme				
`	,			Theory Marks Practic		Practical 1	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150
4	0	2	6	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics		
	(In Cognitive Domain)			
Unit – I	1a. Justify the need of PLC in	1.1 PLC: Characteristics, Operation,		
Introduction	industrial automation	function, Types of PLC		
to PLC	1b. Write different functions of PLC			
	with its advantages			
	1c. Describe Architecture of PLC	1.2 Architecture Of PLC		
	1d. Develop simple application	1.3 Applications of PLC		
	programmes for PLC	1.4 PC v/s PLC		
	1e. Compare the use of PC v/s PLC			
	Classify I/O madulas of DLC	2.1 Overview of L/O sustain		
Unit - II	Classify I/O modules of PLC.	2.1. Overview of 1/O system.		
Input /	Sketch the block schematic of I/O	2.2. Classification: serial, parallel,		
Output	System.	Direct I/O Develle I/O Seriel		
and Power	2c.Describe input-Output systems	I/O		
Supply	2d.Explain Discrete(digital) input and	2.4. discrete input modules: DC		
	output modules	input, AC input, Rectifier with		
		filter, Isolation, logic section.		
		2.5. Discrete output modules:		
		operating principals		
	2e. Explain Analog input Modules	2.6. Analog input modules: single		
	with its strengths and limitations	ended, differential input		
	2f. Discuss Power supply	2.7. Common AC source, isolation,		
	Requirements in PLC	protection		
		2.8. configuration, power line		
		conditioner		
Unit – III	3a. Explain the different Ladder logic	3.1. Ladder diagram: of logic gates,		
PLC	with sketches	multiplexer, Ladder diagram for		
programmin		different logical conditions or		
g		logical equations or truth table.		
	3b. Describe characteristics of PLC	3.2. Timers: types of timer,		
	timer	Characteristics		
	3c. Explaing the working principle of	3.3. Function of timer in PLC		
	a PLC timer.	3.4. Classification of a PLC timer		
	3d. Develop Ladder diagram using	3.5. Ladder diagram using timer.		
	timer			
	3e. Write function and operation of	3.6. PLC counter		
	PLC counter.	3.7. Ladder diagram using counter.		
	3f. Develop Ladder diagram using			
	counter			
Unit – IV	4a. Describe Management	4.1. Introduction of Management		
Communica	Hierarchy of an industry	Hierarchy of an industry		
tion and	4b. Describe evolution of industrial	4.2. Industrial control process		
Networking	process	4.3. Parallel and Serial		

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In Cognitive Domain)	
	 4c. Explain types of communication interface 4d. Describe communication mode 4e. Describe different serial interface 	 communication interface 4.4. Simplex, Half duplex, Full duplex 4.5. RS 232- DB-25 connector, DB-9 connector, RS 422, EIA 485 interface
	 41. Describe industrial network 4g. Explain network topology 4h. Write advantages and disadvantages of different network topology 	4.6. Introduction of industrial network4.7. Bus topology, Ring topology, Star topology, Tree topology
Unit – V Industrial Automation	 5a. Describe working of the Distributed Control System (DCS) 5b. Describe Advantages and Disadvantages of the Distributed Control System (DCS) 	 5.1. basic Concept, History and Hierarchy of DCS 5.2. Functions of each level. 5.3. Advantages and Disadvantages.
	 5c. Describe working of Supervisory Control and Data Acquisition System(SCADA) 5d. Describe Advantages and Disadvantages of Supervisory Control and Data Acquisition System(SCADA) 	5.4. Architecture of SCADA 5.5. Working of SCADA
	 5e. Compare suitability of PLC, DCS and SCADA 5f. Describe different process control applications of Industrial Automation 	5.6. PLC, DCS and SCADA suitablility5.7. Applications: Thermal power plant, Irrigation and Cement factory

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (Theory)

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Introduction to PLC	8	2	7	2	11
II	Input / Output Modules and Power supply	10	2	8	4	14
III	PLC programming	14	2	6	8	16
IV	Communication and Networking	12	2	8	4	14
V	Industrial Automation	12	3	7	5	15
	Total	56	11	36	23	70

Legends: \mathbf{R} = Remember, \mathbf{U} = Understand, \mathbf{A} = Apply and above Level (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED PRACTICAL / EXERCISES

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes mainly in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of *Course Outcomes* related to affective domain. Thus over all development of *Programme Outcomes* (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Approx. Hrs.	
			Required	
1	Ι	Assemble various modules and component of PLC to make a PLC system.	2	
2	II	Execute/Prepare INPUT-OUTPUT module chart	2	
3	III	Execute/Prepare ladder diagram of AND, OR, NOT, NAND, NOR, X-OR, X-NOR gate	2	
4	III	Execute/Prepare ladder diagram for different Arithmetic operations.	2	
5	III	Execute/Prepare ladder diagram for logical operations along with truth table.	2	
6	III	Execute/Prepare ladder diagram for different logical conditions- for Timer	4	
7	III	Execute/Prepare ladder diagram for different logical conditions- for Counter	4	
8	III	Execute/Prepare allover ladder diagram for industrial process and control.	4	
9	III	Develop ladder diagram for a temperature, level, flow control system	4	
10	IV	Interface personal computers in network using different topology	4	
11	IV	Interface RS232- DB-25 connector, DB-9 connector, RS 422, EIA 485 interface	2	
12	V	Use SCADA system.	2	
13	V	Identify various level of distributed control system.	2	
Total 36				
Note: Perform any of the practical exercises from above list for total of minimum 28 hours				
depending upon the availability of resources so that skills matching with the most of the				
outcomes of every unit are included.				

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Students have to find practical applications of various parameters of ladder logical applications.
- ii. Students are instructed to list various practical applications
- iii. Students are instructed to take any one applications

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange Lectures
- ii. Online animation/flash
- iii. Show Video/ Animation film explaining different field applications of PLC,DCS and SCADA.
- iv. Prepare a chart related to PLC,DCS and SCADA Hierarchy
- v. Arrange a visit to industry using PLC

10. SUGGESTED LEARNING RESOURCES

A) Books

S.	Title of Books	Author	Publication/Year
No.			
1	Programmable Logic	Mitra,	Param International Publising
	Controllers and Industrial	Madhuchanda;	(India) Pvt. Ltd., New Delhi,
	Automation an	Gupta, Samarjit Sen	Latest edition
	Introduction		
2	Programmable logic	Webb, John W.;	PHI Learning Pvt. Ltd. New
	controllers: principles and	Reis, Ronald A.	Delhi, Latest edition.
	applications		
3	Programmable logic	NIIT	PHI Learning Pvt. Ltd. New
	control: principles and		Delhi, Latest edition.
	applications		
4	Practical SCADA for	Bailey, David;	Newnes, Burlington, MA
	Industry	Wright, Edwin	

B. Major Equipment/Materials with Broad Specification

- i. PLC Siemens, Allen Bradley trainers
- ii. Compatible PLC software for the above
- iii. SCADA system for renewable energy/wind power system at laboratory level

C. List of Software/ Learning Websites

- i. https://www.fer.unizg.hr/_download/repository/Practical_SCADA_for_Industry.pdf
- ii. http://www.personal.kent.edu/~asamba/tech43550/Chap04.pdf
- iii. http://www.slideshare.net/veenitamore2/ppt-on-plc
- iv. http://www.slideshare.net/JitenderSinghShekhaw/plc-dcs-plc-vs-dcs-by-j-s-shekhawat?next_slideshow=1
- v. http://www.slideshare.net/parbatrajpurohit16/43542179programmablelogiccontrollerplcppt
- vi. https://www.youtube.com/watch?v=GajoFTQjJrY
- vii. http://plc-scada-dcs.blogspot.com/p/downloads.html#axzz3DYGDBl00
- viii. http://www.youtube.com/watch?v=zvS_BuQlSXo#t=27
- $ix. http://en.wikipedia.org/wiki/Programmable_logic_controller$

- $x. \quad http://educypedia.karadimov.info/electronics/control-systems-plc.htm \#PLC$
- xi. http://engineeronadisk.com/V2/book_PLC/engineeronadisk.html
- 11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics
 - Smt. J. M. Patel, ALPE, Dept. of Power Electronics, Dr. S. and S. S. Ghandhy College of Engg. and Technology, Surat
 - **Prof. Shailesh L. Dhoriyani**, LPE, Dept. of Power Electronics, Dr. S. and S. S. Ghandhy College of Engg. and Technology, Surat

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. A.S. Walkey**, Associate Professor, Department of Electrical and Electronics Engineering
- Dr. Anjali Potnish Assistant Professor, Department of Electrical and Electronics Engineering