GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: CHEMICAL ENGINEERING PLANT ECONOMICS (COURSE CODE: 3360502)

Diploma Programme in which this course is offered	Semester in which offered		
Chemical Engineering	Sixth		

1. RATIONALE

A plant-design project moves to completion through a series of stages starting from preliminary evaluation of economics and market to commercial production. Chemical engineering design of a new chemical plant and the expansion or revision of existing one require the use of engineering principles and theories combined with consideration of practical limits imposed by industrial conditions. In this course special emphasis is given on the applied economics and engineering principles involved in the design of chemical plants. Use of these principles is highly required for any successful chemical engineer to work in the area of production, administration, sales, marketing, research, and development of a new chemical project.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Design chemical engineering plants considering principles of economics.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Explain basic concepts of process and plant design
- ii. Select appropriate piping and equipment
- iii. Select appropriate plant location
- iv. Prepare general layout (outline diagram) of proposed plant
- v. Evaluate economics of a chemical project
- vi. Optimise conditions with one and two variables

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits		Ex	amination S	ation Scheme					
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks		Theory Marks Practical Marks		Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	100			
4	4	0	8	70	30	00	00	100			

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics		
	(In Cognitive Domain)			
Unit – I	1a. Describe role of Chemical	1.1	Plant designs: Chemical Engineering	
Basics of	Engineer		Designs, Process Design, Equipment Design,	
Process	1b. Justify the need of plant design		Building Design	
and	1c. Explain components of chemical	1.2	Criteria for good design: Process design	
Plant	Engineering Design		Technical factors, Economic factors Legal	
Design	Id. Describe criteria for good designs	1.2	phases, Selection of a process	
8	Ie. Explain Process design and its	1.5	Continuous V/s Batch processing Shift and	
	components		diagrams	
	11. Describe prant design factors	1 1	Drocoss evolution stages and their	
	Ig. Describe process evolution stages	1.4	importance. Logical evolution stages	
		15	Checklist for pilot plant investigation	
		1.5	enceknist för phot plant investigation.	
Unit – II	2a. Plan for selection of equipment	2.1	Selection of process equipment	
Selection	2b. Differentiate Standard and special	2.2	Standard v/s Special equipment	
of	equipment	2.3	Specification sheet for equipment	
Process	2c. Prepare specification sheet for	2.4	Selection of equipments: Size reduction	
Equipme	equipments		equipment, Heat transfer equipment,	
nt and	2d. Select appropriate equipments	2.5	Mass transfer equipment, Material handling	
Pining			equipment, Pumps	
1 iping	2e. Explain piping, layout and	2.6	Piping, Pipe strength and wall thickness	
	insulation	2.7	Piping design problems, Piping layout	
	2f. Classify different insulation.		rules, Ferrous and non-ferrous pipe,	
		h 0	Non-metallic Piping and tubing,	
		2.0	selection of insulation	
			selection of insulation.	
Unit – III	3a Describe principles of plant	31	Principles of plant layout	
Plant	lavout	3.2	Methods of plant layout: Unit area	
Lavout	3b. Compare methods of plant layout		Concept, Two-dimensional layout	
and	3c. Explain factors affecting plant	3.3	Scale models	
I ocation	location	3.4	Factors for selection of plant location:	
Location			Primary factors and specific factors	
Unit – IV	4a. Evaluate total capital investment	4.1	Total Capital Investment,	
Economic	4b. Estimate equipment cost solve the	4.2	Fixed capital investment, working capital	
Evaluatio	Ac Explain depreciation	13	Equipment cost estimation Cost Size	
n of	Ad Calculate depreciation using	н.5 И Л	relation Cost-Time relation	
Projects	different methods	4 5	Numerical based on Cost Indices	
	4e. Identify components of total	4.6	Depreciation and it's types	
	product cost	4.7	Methods for determining depreciations	
	1	4.8	Arbitrary methods, Methods with interest on	
			investment, Numerical for depreciation	
		4.9	Total product cost (TPC)	
	4f. Estimate profitability	4.10	Profitability analysis: Net and gross	
			earnings, Methods of profitability, Percent	
			return on investment, Pay-out time	
		1	period, Present worth, Turn-over ratio	

Unit	Major Learning Outcomes	Topics and Sub-topics		
	(In Cognitive Domain)			
	4g. Calculate break-even capacity	4.11 Break-even analysis (Analytical method),		
		4.12 Break-even chart (Graphical method),		
		4.13 Numerical of Break-even analysis		
Unit – V	5a. Explain procedure to find out	5.1 General procedure for determining optimum		
Optimum	optimum condition	condition: Procedure with one variable		
Design	5b. Estimate the optimum insulation	(Analytical and graphical), Procedure with		
8	thickness and pipe diameter	two variables (Analytical and graphical)		
	5c. Solve numerical to find optimum	5.2 Optimum economic design for Insulation		
	design	Thickness and Pipe diameter		
		5.3 Numerical for optimum design		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (Theory)

			Distribution of Theory Ma			Marks
Unit	Unit Title	Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Basics of Process and Plant	12	5	5	5	15
	Design					
II	Selection of Process Equipment	12	5	5	5	15
	and Piping					
III	Plant Layout and Location	07	2	5	2	09
IV	Economic Evaluation of a Project	17	7	7	7	21
V	Optimum Design	08	2	3	5	10
Tot	al	56	21	25	24	70

Legends: \mathbf{R} = Remember, \mathbf{U} = Understand, \mathbf{A} = Apply and above Level (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED TUTORIALS

In tutorials numerical or conceptual problems may be given to individual or group of students. Students should be first allowed to struggle on their own to find the solution, and should try their creativity. However, faculty should remain around the students and help them if they are not able to proceed.

It is better if real life problems are case studies are given where different groups of students may come out with different solutions, which can be discussed in a larger group of student to generate more discussions. Following is the suggestive list of exercises; concerned faculty may change/add exercises to this list.

S. No.	Unit No.	Tutorial Exercises	
1	Ι	Prepare block type and equipment flow diagram for production of	
		desired (quantity and quality) chemical	
2	Ι	Prepare block type material balance flow diagram for production of	
		desired (quantity and quality) chemical	
3	Ι	Prepare block type energy balance flow diagram for production of	
		desired (quantity and quality) chemical	

S. No.	Unit No.	Tutorial Exercises	
4	Π	Prepare detailed process and instrumentation flow diagram for	4
		production of desired (quantity and quality) chemical	
5	II	Prepare specification sheet for 1-2 shell and tube heat exchanger	4
6	Π	Prepare specification sheet for packed type distillation column	4
7	III	Solve given simple problems using cost-size relationship and	4
		cost- time relationship (Cost indices)	
8	III	Calculate depreciation using Straight line method for given plant	2
9	III	Calculate depreciation using Declining balance method for given	
		plant	
10	III	Calculate depreciation using Sum of the years digits method for	
		given plant	
11	III	Calculate depreciation using Sinking fund method for given plant	2
12	III	Find-out break-even point Using Analytical and Graphical methods	8
		for given plant	
13	IV	Solve given simple problems to determine optimum value using one	8
		variable and two variable methods. (Graphical and Analytical	
		methods)	
		Total Hours	56

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities. These could be individual and group based.

- i. Explore internet, visit websites of reputed chemical production companies and prepare ppt presentations on different topics (in group of four-five) and present in class
- ii. Study (in group of four-five) the design of some real chemical plant and identify good features of design and also weaknesses in it, present in class to have a group discussion.

9. SPECIAL INSTRUCTIONAL STRATEGY (IF ANY)

- i. Use online course material from reputed universities
- ii. Show videos related to good economical designs of plants for production of different chemical products.
- iii. Show excel spreadsheets from internet about economic evaluation of chemical plants
- iv. Show charts and models of different plants and handouts about their design features and specification of equipment
- v. Arrange expert lectures
- vi. Discuss real life case studies of good and bad design of chemical plants.

10 SUGGESTED LEARNING RESOURCES

A) Books

S.	Title of Books	Author	Publication	
No.				
1	Plant Design and Economics for Chemical Engineers,	Peters, Max and Klaus Timmerhaus	McGraw Hill, New Delhi, 4 th edition	
2	Chemical Engineering Plant Design.	Vilbrandt, Frank Carl and Dryden, Charles E.	McGraw Hill, New Delhi, 4 th edition	
3	Chemical Engineering Design	Towler, Gavin and Sinnott, R. K.	Butterworth-Heinemann (2008)	
4	Process Engineering Economics	Couper, James R.	Marcel and Dekker	

B) Major Equipment/Materials with Broad Specifications

- i. Charts and Models
- ii. Specification sheets of equipment from fabricator
- iii. Commercial project report

C) Software/Learning Websites

- i. www.cheresources.com
- ii. http://people.clarkson.edu/~wwilcox/Design/refcosts.htm
- iii. http://app.knovel.com/web/toc.v/cid:kpCEDPPEP4
- iv. https://www.lib.utexas.edu/chem/info/chemengecon.html
- v. http://www.mhhe.com/engcs/chemical/peters/data/ce.html

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- Prof. Kartik R. Desai, Head, Chemical Engg. Dept., N. G. Patel Polytechnic, Isroli-Afwa
- Prof. D. H. Joshi, Lecturer, Chemical Engg. Dept., G. P. Valsad
- Prof. P. D. Chaudhari, Lecturer, Chemical Engg. Dept., G. P. Valsad
- Prof. J. R. Vadher, Lecturer, Chemical Engg. Dept., Shri BPTI, Bhavnagar

Coordinators and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Joshua Earnest, Professor of Electrical & Electronics Engineering.