GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: BIO MATERIALS AND IMPLANTS (COURSE CODE: 3360306)

Diploma Programmes in which this course is offered	Semester in which offered
Biomedical engineering	Sixth

1. RATIONALE

Biomaterials in the form of implants like sutures, bone plates, joint replacements and medical devices i.e. pacemakers, artificial cardiac valves, blood tubes are widely used to replace and restore the function of traumatized or degenerated tissues or organs, and thus improve the quality of life of the patients. The biocompatibility profiles of materials employed for the replacement or augmentation of biologic tissues has always been a critical concern within the health care disciplines. This course curriculum is important for a diploma biomedical engineer to develop an understanding of the concepts underlying the design and selection of materials for use in prostheses and implants and develop relevant skills to work effectively in health care industries.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Select appropriate bio-materials and implants as per requirement.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Explain the concept and need of bio-materials, implants and bio compatibilities.
- ii. Describe the types of various metals, alloys and ceramics used for implantation along with their formation and applications
- iii. Explain the use of various polymers used for implantation.
- iv. Elaborate the concept of inflammation, infection and foreign body response.
- v. Describe the applications of bio-materials and implants.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits			Examination Scheme					
(In Hours)		(L+T+P)	Theory Marks		(L+T+P) Theory Marks Practical		l Marks	Total Marks
L	Т	Р	С	ESE	РА	ESE	РА	150
4	0	2	06	70	30	20	30	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Introduction of Bio Materials and Implants	 1a. Describe biomaterials and implants and their impact. 1b. Describe the construction of biomaterials. 1c. Explain performance of implants. 1d. Describe tissue response to implants. 1e. Describe grafts, stents and explain bio compatibility 	 1.1. Need of biomaterial 1.2. Construction of bio-material 1.3. Impact of bio-material 1.4. Performance of implants 1.5. Tissue response to implants 1.6. Grafts ,stents 1.7. Biocompatibility
Unit– II Metals and Ceramics	 2a. Explain the types of stainless steel along with the formation and its applications. 2b. Describe the types of co-ch along with the formation and its applications. 2c. Describe the types of Ti based alloys and describe formation along with its applications. 2d. Describe the types of nitinol and describe formation along with its applications. 2e. Describe the types of carbons and their formation along with applications. 2f. Describe the types of Al and their formation along with applications. 2g. Describe the types of surface reactive ceramics and and their formation along with applications. 	 2.1 Stainless steel 2.2 Cobalt-chromium alloys: Cast alloys, Wrought alloys, Forged alloys 2.3 Titanium based alloys: Cast alloys, Wrought alloys, Forged alloys 2.4 Nitinol and other metals 2.5 Carbons 2.6 Alumina 2.7 Surface reactive ceramics: Bio- glass, Ceravital
Unit– III Polymers	 3a. Explain polymerization process. and their classification. 3b. Describe the features of polymers used in biomedical field. 3c. Describe the formation of different types of polymer 3d. Explain sterilization process of polymer 	 3.1 Polymerization: Types of polymer chain, Polymers in bio- medical use 3.2 Polyethylene and polypropylene 3.3 Per fluorinated polymers 3.4 Acrylic polymers 3.5 Polyamides and Poly Methyl Methacrylate (PMMA) 3.6 Silicon rubber 3.7 Sterilization of polymer

Unit		Major Learning Outcomes		Topics and Sub-topics
		(In Cognitive Domain)		
Unit – IV	4a.	Explain foreign body response	4.1	Foreign body response
Inflammation		towards any bio material or	4.2	Inflammation
		implant.	4.3	Acute inflammation
	4b.	Explain acute and chronic	4.4	Chronic inflammation
		inflammation.	4.5	Infection
	4c.	Describe the infections due to	4.6	Blood–Material interactions
		implants.	4.7	Biocompatibility
	4d.	Explain the concept of bio		
		compatibility of implants with the		
		human body.		
Unit – V	5a.	Describe the vascular implant.	5.1	Vascular implants:
Application of	5b.	Describe the material, features and		Implantable artificial kidney,
Bio-Materials		working of artificial kidney.		Cardiac pacemaker,
and Implants	5c.	Describe the material used in		Circulatory assist device,
		endocardial electrodes of cardiac		Valve implants
		pace maker.	5.2	Optical implants
	5d.	Explain circulatory assist device.	5.3	Dental implants: Impression
	5e.	Explain intra ocular lens.		materials, Fillings and
	5f.	Describe impression materials,		restoration materials
		fillings and restoration materials.	5.4	Orthopedic implant: Knee
				joint and hip replacement

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (Theory)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Introduction of Bio Materials and Implants	08	04	04	02	10
II	Metals and Ceramics	12	05	05	05	15
III	Polymers	12	05	05	05	15
IV	Inflammation	10	04	04	04	12
V	Application of Bio-Materials and Implants	14	06	06	06	18
	Total	56	24	24	22	70

Legends: \mathbf{R} = Remember, \mathbf{U} = Understand, \mathbf{A} = Apply and above Level (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

7. SUGGESTED EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes mainly in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)			
1	Ι	Identify various implants used in biomedical field.	2		
2	II	Identify various metals and alloys used in biomedical field.	2		
3	II	Identify various ceramics used in biomedical field.	2		
4	III	Identify various polymers used in biomedical field.	2		
5	IV	List characteristics of tissue response to implants.	2		
Demons	Demonstration Exercises by Expert				
6	V	Study models of different dental implantations and draw the	4		
		dental implant shape with its material specifications			
7	V	Study models of cardiac valve implantations and draw the	4		
		cardiac valve implant shape with its material specifications.			
8	V	Study cardiac pacemaker implantations and draw its circuit	4		
		diagram with working principle.			
9	V	Study models of intra ocular lens implantations and draw	4		
		the implantation with its material specifications.			
10	V	Study models of knee joint or hip replacements and draw	4		
		the knee joint/hip replacements implant shape with its			
		material specifications.			
		Total	30		

8. SUGGESTED STUDENT ACTIVITIES

Following are the list of proposed student activities such as:

- i. Collect information to become aware of the materials being used in body implantation.
- ii. Collect information to become aware of implantation techniques.
- iii. Collect pictures of various as biomaterials and bio-implants.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange Seminars/Symposiums by giving topics to students (and ask them to explore the details from Internet/suppliers of implants.)
- ii. Show animations/video films to explain the concepts
- iii. Arrange visit to an advanced hospital and reputed suppliers of implants to study the different types of bio-materials and implants.
- iv. Arrange expert lectures.

10. SUGGESTED LEARNING RESOURCES

A) Books

S.	Title of Book	Author	Publication
No.			
1.	Biomaterials	Bhatt Sujata V.	Alpha science international-2005
2.	Biomedical Materials	Roger Narayan	Springer Publication-2009
3.	Biomaterials Principles And	Park Joon B.	CRC press, Boca London,
	Applications		2003
4.	Introduction to Biomaterials	Donglu shi	Tsinghua university Press, World
			scientific-2005

B) Major Equipment/ Instrument with Broad Specifications

- i. Pacemaker
- ii. Dental implants
- iii. Artificial knee joint/hip joints
- iv. Sample of cardiac valves
- v. Models/Samples of artificial kidneys

C) Software/Learning Websites

- i. www.implantdirect.com
- ii. www.biomaterials.pl
- iii. www.umcg.nl
- iv. http://ocw.mit.edu/courses/materials-science-and-engineering/3-051j- materials- forbiomedical-applications-spring-2006/
- v. http://ocw.mit.edu/courses/mechanical-engineering/2-782j-design-of-medical-devicesand-implants-spring-2006/

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. B.C.Chaudhari, Lecturer, Dept of Biomedical Engineering, G.P.Gandhinagar
- **Prof. D.C.Shreegod**, Lecturer, Dept of Biomedical Engineering, G.P.Gandhinagar
- Prof. P.G.Lakhani, Lecturer, Dept of Biomedical Engineering, G.P.Gandhinagar
- **Prof. A.K.Bula**, Lecturer, Dept of Instrumentation and Control Engineering, G.P.Gandhinagar

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. (Mrs.) Susan S. Mathew**, Associate Professor, Dept. of Electrical and Electronics Engineering.
- Dr. Shashi Kant Gupta, Professor and Coordinator for State of Gujarat