GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

APPLIED MECHANICS (Code: 3300008)

Diploma Programme in which this course is offered	Semester in which offered
Aeronautical Engineering	Second

1. RATIONALE.

Applied mechanics, as its name suggests, bridges the gap between physical theory and its application to technology. As such, applied mechanics is used in many fields of engineering, especially mechanical and Metallurgy Engineering. In this context, it is commonly referred to as engineering mechanics. To impart basic knowledge of Engineering Mechanics where in Laws of Physics are applied to Solve Engineering problems, this programme / course will help the student to develop basic know how & awareness of the various laws of physics & it's real life applications in the various fields of engineering

2. COMPETENCY.

The course content leading to the achievement of the following competencies;

i. Apply the concepts of force, work and energy to calculate work done, power required & efficiency for various simple machines

3. TEACHING AND EXAMINATION SCHEME.

То	Topphing Scheme Total		Examination Scheme					
Te	(In Hour	rs)	Credits (L+T+P)	Theory Marks		Pract Mai	tical rks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150
03	00	02	05	70	30	20	30	

 $\label{eq:Lecture: T-Tutorial/Teacher Guided Theory Practice; P-Practical; C-Credit, ESE - End Semester Examination; PA - Progressive Assessment.$

4. COURSE DETAILS

Unit	Major LearningOutcomes	Topicsand Sub-topics
Unit–I	1.1DefinescopeofEngineering	Scalar&VectorQuantities-
	Mechanics	likeforce, pressure, velocity, acceleration
Introduction	1.2ClassifyScalar& Vector	Static & Dynamic–Kinetics& Kinematics
	quantity	MKS, CGS &SIunits
	1.3Diffrentiatethesystemsof	anditsconversion
	Units	alongwithFPIandMetric System
Unit–II	2.1UnderstandCo-planer	Force –units, elements,
	ConcurrentForcesystem	Laws/Principles offorcessuchasPrincipleof
Coplanar	2.2Computeresultant&	Superposition, Principle of
Concurren	Equilibriumforces forgiven	transmissibility
t Forces	coplanarconcurrent	Composition&ResolutionofForces
	forcesystem	Resultant
		& Equilibrium forces conditions of
		equilibrium
		Analytical&graphicalmethod forLawof
		Parallelogram, Lawof Triangle, Lami's Lami's
Unit–III	3.1Differentiate Co-planar	Principalof Moment Moment, Couple, application, pro
	parallel and non - concurrent	pertiesofcouple, conditions of equilibrium
	forces	Typesofsupports, endconditions-
Coplanar	3.2Computeresultant&	Hinge, freeend, roller, fix,
Non-	Equilibriumforces	Typesofloadslikepointload, U.D.L, U.V.L, Couple,
Concurren	forgiven	Analytical method to Evaluate reactions instatically
t Forces	coplanarconcurrent force	determinatebeamsubjectedtopointloadand/orU.D.L
	system	by
	3.3CalculateSupport	analyticalmethodofsolvingStaticallydeterminate
	reactions of	beams.
	thegivensimplysupported	
Unit–IV	4.1DistinguishbetweenCentroi	Firstmomentofarea;tofindCentroid-
	d and Contro of Crossites	standardshapesofI,L, Channel&Tsections,
Centroid	4 2 Compute Controid & Contr	axisoisyillineury Firstmomentofmoss :tofindC Cofstandardaalida
&Centre	4.2ComputeCentroid&Centr	Firstmomentormass, tormuc. Gorstandardsonds
of Gravity	d lamina	sections, Axisorsymmetry
	diamina	
Unit–V	5.1Appreciate Friction and its	Friction, LawsofFriction, AngleofFriction, AngleofR
	Engineeringapplications	epose,typesoffriction
Friction	5.2Calculate coefficient	Application
	of frictionfordifferentsurfaces	of Lami's theory and theory of resolution of
		forces, examples on friction for ablock restingon
		horizontalplane&oninclinedplane
Unit–VI	6.1Establish relation	Work-workdone,forcedisplacementdiagram,torque
	between	,workdonebytorque
	Work,PowerEnergy	Power–I.H.PandB.H.Pofengine,Equationof H.Pin
Work,Power	6.2Calculate IHP and BHP in	termsofTorqueandR.P.M, EngineeringProblems
&Energy	differentconditions	Energ y – Kinetic&PotentialenergyandEngineering
		Problems

Unit–VII	7.1Apply the principle &	principles of machines to evaluate Mechanical
	application of SimpleMachines	Advantage, VelocityRatioofsimplemachine
Simple	7.2Comparereversible&	pulleyblocks, DrawLinesketchofdifferentsystems of
Machines	irreversibleMachines, evaluate	Simple and compound levers, Problems, Laws of
	theefficienciesofvarioussimple	Machines, reversible & nonreversible machines
	machines	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY).

Unit		Topohing	Distribution of Theory Marks			
No.	Unit Title	Hours	R Level	U Level	A Level	Total Marks
1.	Introduction	02	04	00	00	04
2.	Coplanar Concurrent Forces	10	02	02	06	12
3.	Coplanar Non-Concurrent Forces	10	02	02	08	12
4.	Centroid and Centre of Gravity	04	02	02	06	10
5.	Friction	06	02	04	06	12
6.	Work, Power & Energy	04	02	02	06	10
7.	Simple Machines	06	02	02	08	12
	Total	42	16	14	40	70

Legends:R = RememberU= Understand; A= Apply and above levels (Bloom's revised taxonomy).

6. SUGGESTEDLISTOF EXERCISES/PRACTICAL/EXPERIMENTS

Theexercises/practical/experimentsshouldbe properlydesigned and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of Exercises/practical/experiments for guidance.

Sr. No.	UnitNo.	PracticalExercise/Experiment		
1	01			
2	02	Verifyand calculateresultantforcethroughLawofParallelogram,PolygonLawof Forces,Lami'sTheorem		
3	03	VerifyreactionsinbeamthroughGraphical& analyticalmethod		
4	04	CalculateCentroidoflaminaandCentroidofdifferentsections		
5	05	CalculateCoefficientofSlidingFrictionfordifferentsurfaces-Wood,Glass		
6	06			
7	07	Work-outM.A&EfficiencyofSimplepurchasecrab,simplewheelandaxle,simple screwjack		

7. SUGGESTEDLISTOF STUDENTACTIVITIES

- 7.1 Studentswillprepare File/journal fortheabovementionedExperiments.
- 7.2Studentsmaybegivenfewexercisestocalculateresultant/equilibriumforceof t h e forcesystem graphically&analyticallyverifytheresults.-unit2
- 7.3 Studentmaybeaskedto collect photographs from internet which is related to field application of various topics

8. SUGGESTEDLEARNINGACTIVITIES

A. ListofBooks

Sr.	Title of Book	Author	Publicatio	
No.			n	
1.	EngineeringMechanics	RS Khurmi	S. Chand, New Delhi	
2.	EngineeringMechanics	DS Kumar	S. K. Kataria&Sons,	
3.	EngineeringMechanics	Bear&Jonstan	Newmedia	
4.	AppliedMechanics	HJShah&Junarkar	CHAROTARPublication	

B. ListofMajor Equipment/Instrument

- ApparatusforLawofParallelogram,Lami'stheorem&law ofPolygon
- Apparatusfordeterminationofcoefficientoffriction
- ApparatustodetermineCG ofLamina
- Beamapparatustofindreactions
- Simplepurchasecrab, simple wheeland axle, simple screwjack

C. ListofSoftware/LearningWebsites

- VideoLecturesonAppliedMechanicsByProf.SK.Gupta,DepartmentofAppliedMechanics, IITDelhi
- www.tut.fi/.../InstituteofAppliedMechanicsandOptiization/TME-51
- ocw.mit.edu>...>MechanicsofMaterials
- www.me.ust.hk/.../ME106-applied%20mechanics-lecture%201.pdf

COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from

Co-coordinator and Faculty Members from NITTTR Bhopal