GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH: CYBER SECURITY (59)

SUBJECT NAME: CRYPTOGRAPHY: PROTOCOLS AND STANDARDS

SUBJECT CODE: 2725909 SEMESTER: II

Type of course: Master of Engineering (Cyber Security)

Prerequisite: Cryptography fundamentals, ciphers

Rationale: Standard algorithms and protocols provide a focus for study; standards for popular

applications provide specific structure for developing an application.

Teaching and Examination Scheme

Teac	ching Sch	eme	Credits	Examination Marks				Total		
				Theory	Theory Marks Practical Marks		ıl Marks		Marks	
L	T	P	C	ESE	PA	ESE (V)		PA (I)		
				(E)	(M)	ESE	OEP	PA	RP	
4	0	2	5	70	30	20	10	10	10	150

Content

Sr. No.	Content	Total Hours	%Weightage
1.	Protocol Building Blocks	5	10%
	Introduction to Protocols		
	 Communications using Symmetric Cryptography 		
	One-Way Functions		
	 One-Way Hash Functions 		
	 Communications using Public-Key Cryptography 		
	Digital Signatures		
	 Digital Signatures with Encryption 		
	 Random and Pseudo-Random Sequence Generation 		
2.	Basic Protocols	5	10%
	Key Exchange		
	• Authentication		
	 AUTHENTICATION AND KEY EXCHANGE 		
	• FORMAL ANALYSIS OF AUTHENTICATION AND		
	KEY-EXCHANGE PROTOCOLS		
	 Multiple-Key Public-Key Cryptography 		
	Secret Splitting		
	• Secret Sharing		
	Cryptographic Protection of Databases		
3.	Intermediate Protocols	8	30%
	Timestamping Services		
	Subliminal Channel		
	 Undeniable Digital Signatures 		
	 DESIGNATED CONFIRMER SIGNATURES 	Pa	ge 1 of 3

	-		
	PROXY SIGNATURES		
	Group Signatures		
	Fail-Stop Digital Signatures		
	Computing with Encrypted Data		
	Bit Commitment		
	Fair Coin Flips		
	Mental Poker		
	ONE-WAY ACCUMULATORS		
	All-or-Nothing Disclosure of Secrets		
	KEY ESCROW		
4.	Advanced Protocols	4	10%
	ZERO-KNOWLEDGE PROOFS		
	Zero-Knowledge Proofs of Identity		
	Blind Signatures		
	• IDENTITY-BASED PUBLIC-KEY CRYPTOGRAPHY		
	Oblivious Transfer		
	OBLIVIOUS SIGNATURES		
	Simultaneous Contract Signing		
	Digital Certified Mail		
	Simultaneous Exchange of Secrets		
5.	Esoteric Protocols	3	5%
	SECURE ELECTIONS		
	Secure Multiparty Computation		
	Anonymous Message Broadcast		
	DIGITAL CASH		
6.	Cryptography standards	11	35%
	IPsec Virtual Private Network (VPN)		
	IEEE P1363		
	Transport Layer Security (formerly SSL)		
	SSH secure Telnet		
	Content Scrambling System		
	Kerberos authentication standard		
	RADIUS authentication standard		
	ANSI X9.59 electronic payment standard		

Suggested Specification table with Marks (Theory)

R Level	U Level	A Level	N Level	E Level	C Level
10	40	20			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books

1. Everyday Cryptography:Fundamental principles and applications By Kevith M. Martin, Oxford University Press

2. Applied Cryptography: Protocols, Algorithms, and Source Code in C 2nd Edition by Bruce Schneier, WILEY

3. Companion to User's Guide to Cryptography and Standards, Alexander W. Dent Chris J. Mitchell, Amtech house

Course Outcome

After learning this course, the students should able to:

• Investigate protocols in cryptography.

• Apply standards in cryptography techniques.

List of Experiment

Full semester project can be taken up

1) Implement Kerberos authentication

2) Implement Radius authentication standards

3) Implement key exchange protocol

4) Implement certificate generation and certificate chaining.

Design based Problems (DP)/Open Ended Problem:

1) Develop a security protocol that fits for inter disciplinary engineering problem such as operating a high speed train.

Major Equipment:

Computer systems having following minimum technical configurations

Processor:i3 or i5 or higher

RAM: minimum 4 GB

HDD: 1 TB

Internet and Wi-Fi connectivity

License Window/Linux operating system