GUJARAT TECHNOLOGICAL UNIVERSITY

MECHANICAL (PRODUCTION ENGINEERING) (28) METROLOGY & COMPUTER AIDED INSPECTION SUBJECT CODE: 2722809 SEMESTER: II

Type of course: MAJOR ELECTIVE - III

Prerequisite: NIL

Rationale: This course provides the knowledge and practice regarding Quality Assurance through different Computer Aided Inspection and Newest Metrology Precision Instruments. Other more Fundamental application of LASER technology and Sensors used in Computer Aided Inspection Practice for Digitizing the Production Time.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theor	ry Marks	Practical Marks				Marks
				ESE	PA (M)	ESE (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	0	4	70	30	30	0	10	10	150

Content:

Sr. No.	Content		% Weightage
		Hrs	
1	Metrology and Techniques:		
	Standards in metrology-definition, Traceability, Characteristics Length &	04	11
	Angular measurements-Review of standard instruments, GD and tolerance		
	procedure-Review of dimension & form tolerance and methods of		
	measurement, Tolerance analysis.		
2	Surface and form metrology - flatness, roughness, waviness cylindricity,	04	11
	etc., Methods of improving accuracy & surface finish, Influence of forced		
	vibration on accuracy, Dimensional wear of cutting tools and its influences		
	on accuracy.		
3	Standards for length measurement standards and their calibration – Light	07	14
	interference - Method of coincidence - Measurement errors. Various	05	14
	tolerances and their specifications, gauging assembly, comparators.		
4	Angular measurements - principles and measuring instruments.		
4	Laser Applications in Metrology:		
	LASER light source, LASER interferometer, LASER alignment telescope,	05	14
	LASER incrometer, On-line and in-process measurements of diameter,	05	14
	koundness and surface roughness using LASER, Micro noies and		
5	Special Measuring Instruments and Techniques:		
5	Optoplastronic devices, contact and non-contact types. Applications in on	06	19
	line and in process monitoring systems. Tool wear measurement Surface	00	10
	measurement Machine vision shape identification Edge detection		
	techniques Normalization gray scale correlation Template Techniques		
	Surface roughness using vision system Interfacing robot and image		
	surface roughness using vision system, interfacing robot and image		

	processing system.		
6	Sensors in Inspection: Manufacturing applications of photo detectors, deflection methods-beam detection, Reflex detection, & Proximity detection, Applications of Inductive and Capacitive proximity sensors, Understanding microwave sensing applications laser sensors and limit switches. Advanced sensor technology-Bar code systems, Principles and applications of Colour sensors, electro-magnetic identifier, Tactile sensors, Ultrasonic sensors, Odour sensors	06	18
7	Computer Aided Metrology - Principles and interfacing, soft metrology - Application of lasers in precision measurements- laser interface, laser scanners, Coordinate measurement machine (CMM), Type of CMM & applications.	05	14

Reference Books:

1. Fundamentals of dimensional Metrology T. Busch and R. Harlow Delmar, 3e

- 2. Engineering Metrology G. Thomas and G. Butter Worth PUB
- 3. Sensors and Control systems in Manufacturing Sabne Soloman McGraw Hill Book
- 4. Measurement systems: Applications & Design Doebelin International Student Edition
- 5. Optoelectronics for Technology and Engineering Robert G. Seippel Prentice Hall India
- 6. Interface Technology for Computer Controlled Ulrich-Rembold, Armbruster Marcel Dekker

Publications, Manufacturing processes and Ulzmann NY

- 7. study manual on tolerance stacks, vol.1 Second edition ASME. 1994
- 8. Dimensioning and tolerancing of mass Spotts Prentice Hall, 1983 Production

Course Outcome:

After learning the course the students should be able

- 1. to acquire the basic knowledge and practice regarding Quality Assurance through different Computer Aided Inspection and Newest Metrology Precision Instruments.
- 2. Basic information and real time applications of LASER technology in the field.
- **3.** Get knowledge of Sensors and their application in Computer Aided Inspection Practice for Digitizing the Production Time.

List of Tutorials:

- 1. Performance of Standard Length Measurements using Instruments
- 2. Performance of Standard Angle Measurements using Instruments
- 3. Performance Surface and form metrology
- 4. To study about Laser Applications in Metrology
- 5. To study about Special Measuring Instruments and Techniques
- 6. To study about Sensors in Inspection
- 7. To study about Computer Aided Metrology

Major Equipments:

- 1. Machine Vision System
- 2. CMM machine
- 3. LASER Micrometer

4. Velocity Sensor Instrument

Review Presentation (RP): The concerned faculty member shall provide the list of peer reviewed Journals and Tier-I and Tier-II Conferences relating to the subject (or relating to the area of thesis for seminar) to the students in the beginning of the semester. The same list will be uploaded on GTU website during the first two weeks of the start of the semester. Every student or a group of students shall critically study 2 papers, integrate the details and make presentation in the last two weeks of the semester. The GTU marks entry portal will allow entry of marks only after uploading of the best 3 presentations. A unique id number will be generated only after uploading the presentations. Thereafter the entry of marks will be allowed. The best 3 presentations of each college will be uploaded on GTU website.