GUJARAT TECHNOLOGICAL UNIVERSITY

MECHANICAL (PRODUCTION ENGINEERING) (28) TOOL & DIE DESIGN SUBJECT CODE: 2722807 SEMESTER: II

Type of course: MAJOR ELECTIVE - II

Prerequisite: NIL

Rationale: This course provides the knowledge and practice regarding different Cutting Tool Design and Analysis. This course gives practice for various Drilling Jig, Milling Fixture Design helping in Industries for Big Job Locating and Clamping work also Design Forging Die, Casting Die and Press Tools Design.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	ry Marks	Practical Marks				Marks
				ESE	PA (M)	ESE (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	2	5	70	30	20	10	10	10	150

Content:

Sr.	Content	Total	% Weightage
No.		Hrs	
1	Cutting Tool Design	04	11
	Fundamentals of Cutting tools design, cutting tools and their principal		
	elements, Tool geometry, system of nomenclatures and their		
	interrelations, setting for the grinding of various basic cutting tool		
	(turning, drilling, milling)		
2	Analyses and Design of Jigs and Fixture	10	27
	Principles of jig and fixture design, Dual cylinder location, diamond pin		
	analysis, V-block analysis, design principles of centralizers, various		
	mechanisms and design of equalizers, analysis for optimum number of		
	clamping forces required and calculation of their magnitudes, concept		
	of modular fixtures, design of fixtures for NC/CNC machines,		
	computer		
	Applications in fixture design and analysis.		
3	Design of press tools:	06	17
	Components of die design, design of die blocks, punches and strippers,		
	methods of holding punches, sketches of stock stops, Design procedure		
	for progressive dies, compound dies and combination dies for press tool		
	operation forging die design for drop and machine forging parts.		
	Computer applications in press tool design.		
4	Design of forging dies:	06	17
	Grain flow considerations, parting line selection, draft, design problems		
	involving ribs, bosses and fillets. Flash and flash control, determination		
	of number of impressions required and their sequence, design steps and		
	analysis of forging dies, detail calculations, shrinkage, cavity shapes,		
	heat transfer considerations, cooling and ejection systems, automation		

	in		
	forging operations, computer aided design and analysis.		
5	Design of injection molds	06	17
	Principles of melt processing, product considerations, determination of		
	economical number of cavities, temperature control of injection molds,		
	calculation of mold opening force and ejection force. Detail design of		
	cooling system, ejection system and gating system. Moldability		
	features, mold flow analysis.		
6	Die casting die design	04	11
	Metals for die casting, specific details of die construction, casting		
	ejectors, side cores, loose die pieces, slides, types of cores, directional		
	solidification, types of feeders, die venting, water cooling, design		
	aspects of die casting dies, defects.		

Reference Books:

- 1. Cole: "Tool Design"
- 2. Donaldson: "Tool Design", Tata McGraw Hill.
- 3. ASTEM: "Fundamentals of Tool Design"
- 4. P.C.Sharma: "A Textbook of Production Engineering"., S.Chand Publication, N.Delhi
- 5. Ivana Suchy, "Handbook of Die Design", 2nd edition McGraw Hill.
- 6. Ventatraman, "Design of Jigs, Fixtures and Press Tools", Ascent Series Tata McGraw Hill.
- 7. Deshpande D. L., "Basic Tools", 2nd edition University Press.

List of Experiments:

- 1. Design of Jigs and Fixture
- 2. Design of press tools
- 3. Design of forging dies
- 4. Design of injection moulds
- 5. Die casting die design

Open Ended Problems:

Major Equipments:

- 1. Drill Jigs For heavy duty Radial Drill Machine
- 2. Milling Fixture for Profile Cutting
- 3. Forging Machine
- 4. Combination Press

List of Open Source Software/learning website:

- I. http://www.wisetool.com/tdesign.html
- II. http://nptel.ac.in/courses/112106153/Module%203/Lecture%205/MF_Module_3_Lecture_ 5.pdf
- III. http://nptel.ac.in/video.php?subjectId=112105126

Review Presentation (RP): The concerned faculty member shall provide the list of peer reviewed Journals and Tier-I and Tier-II Conferences relating to the subject (or relating to the area of thesis for seminar) to the students in the beginning of the semester. The same list will be uploaded on GTU website during the first

two weeks of the start of the semester. Every student or a group of students shall critically study 2 papers, integrate the details and make presentation in the last two weeks of the semester. The GTU marks entry portal will allow entry of marks only after uploading of the best 3 presentations. A unique id number will be generated only after uploading the presentations. Thereafter the entry of marks will be allowed. The best 3 presentations of each college will be uploaded on GTU website.