GUJARAT TECHNOLOGICAL UNIVERSITY

CHEMICAL ENGINEERING (COMPUTER AIDED PROCESS DESIGN) (16) ADVANCED KINETICS AND REACTION ENGINEERING SUBJECT CODE: 2721609 SEMESTER: II

Type of course: Core-IV (M.E.CAPD)

Prerequisite: Knowledge of Reaction engineering at undergraduate Level

Rationale: Able to learn about Kinetics and Reaction Engineering.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	ry Marks	Practical Marks			Marks	
				ESE	PA (M)	ESE (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	0	4	70	30	30	0	10	10	150

Content:

Sr.	Topics	Teachin	Module
No.	Topics	g Hrs.	Weightage
1	INTRODUCTION:	8	15
	Introduction to design for Heterogeneous Reacting Systems, Linear rate		
	expressions, Non-linear rate expressions.		
2	HETROGENEOUS REACTIONS:	7	15
	Fluid-Particle Reactions, Different Types of Models, Fluid-Fluid		
	Reactions, Rate equation, Kinetic regimes for mass transfer & reaction,		
	Rate equation for Different Kinetic regimes.		
3	FLUIDISED BED REACTORS:	8	15
	Design of catalytic Reactors, Fluidized bed reactor Reaction kinetics,		
	Performance equation, Design equation for fluidized bed reactor, Different		
	Models for fluidized bed reactor, Hydrodynamic flow model, Bubbling		
	Fluidized bed reactor, Flow patterns, Performance equation.	0	1.5
4	MULTIPHASE REACTORS:	8	15
	Design of Multiphase Reactor, Slurry Reactor-Slurry Reaction kinetics,		
	Performance equation, Applications. Loop Reactor- Introduction, and Field		
	Applications, Practical limitation of Stirred Tank and Loop Reactor, Design		
	Methods, Residence Time Distribution, Reactor Modelling. Moving bed		
=	reactor- performance equation, characteristics, application etc. BUBBLE COLUMN REACTOR:	7	15
5		1	15
	Bubble column Reactor-Introduction, Various factors affecting the performance of Bubble column Reactor, Industrial Applications,		
	Advantages and disadvantages of Bubble column reactor, Criteria of		
	selection of different types of gas-liquid reactors, Process design of Bubble		
	column reactor, Example of Bubble column reactor.		
6	DESIGN OF REACTORS:	8	15
U	Bio-Reactor- Introduction, Rate law, Stoichiometry, Mass-Balance, Design	0	15
	equation Moving Bed Reactor- Introduction, Kinetics of Moving Bed		
	equation moving Ded Reactor- introduction, Kinetics of Moving Ded		

	Reactor, Performance equation, Example, Trickle Bed Reactor- Introduction, Design, Flow Regimes, Liquid Hold up, Pressure Drop, Mass		
	Transfer.		
7	MONOLITHIC REACTORS:	7	10
	Introduction, types, classifications, characteristics, applications, advantages		
	etc.		

Reference Books:

- 1. Chemical Reaction Engineering by Octave Levenspiel.
- 2. Elements of Chemical Reaction Engineering by H.Scott Fogler.
- 3. Introduction to Process Engineering and design by S.B.Thakore & B.I. Bhatt
- 4. Ulmann's Encyclopedia Vol-4.

Course Outcome:

After learning the course the students should be able to:

- Design for Heterogeneous Reacting Systems.
- Develop the different types of Models.
- Able to design for Datalytic Reactors.
- Develop the Different Models for fluidized bed reactor.
- Able to design for Multiphase Reactor.
- Learn about Various factors affecting the performance of Bubble column Reactor.
- Apply the design equation for Moving Bed Reactor.
- Learn the advantages of Monolithic Reactors.
- Learn about Bio-Reactors.

Major Equipment:

Stirred Tank Reactor, Plug Flow Reactor etc.

List of Open Source Software/learning website:

- www.irisa.fr/s4/download/papers/ltta-emsoft-2004.pdf
- www.academia.edu/.../A_NOVEL_DESIGN_OF_HETEROGENEOUS_C.
- opus4.kobv.de/opus4-tuberlin/files/3541/jaso_stanislav.pdf
- www.industchem.com/content/4/1/20

Review Presentation (RP): The concerned faculty member shall provide the list of peer reviewed Journals and Tier-I and Tier-II Conferences relating to the subject (or relating to the area of thesis for seminar) to the students in the beginning of the semester. The same list will be uploaded on GTU website during the first two weeks of the start of the semester. Every student or a group of students shall critically study 2 papers, integrate the details and make presentation in the last two weeks of the semester. The GTU marks entry portal will allow entry of marks only after uploading of the best 3 presentations. A unique id number will be generated only after uploading the presentations. Thereafter the entry of marks will be allowed. The best 3 presentations of each college will be uploaded on GTU website.